Tag Archives: bioethics


It’s Time to Postpone Your Appointment with the Grim Reaper – Article by Gerrard Jayaratnam

1 comment

Categories: Philosophy, Science, Transhumanism, Tags: , , , , , , , , , , , , , , , , , , , , , , , ,

The New Renaissance HatGerrard Jayaratnam

How long would you like to live for? Is there a limit to how long we can live for? These are not questions you hear often, but do not be surprised if they are repeated more frequently in the future. The reason? Life extension. It is the concept of living well beyond the average lifespan. [1]

Humans are already living longer due to vaccines and improvements in sanitation. [2] The World Health Organization reported that the average life expectancy at birth increased from 48 years in 1955 to 65 years in 1995, and is projected to rise to 73 years by 2025. [3] As medical techniques continue to improve, we are more inclined than ever to pursue life extension. [1] Indeed, from the Epic of Gilgamesh to China’s First Emperor, prolonging life has been an ever-present thought in society. [4, 5] Both individuals failed to escape death, but the idea of life extension ironically lives on. Even so, is it truly possible and what should upcoming doctors and scientists consider if they are to join the most ambitious of quests?

The “Horcruxes” of reality 

In the fictional Harry Potter series, “Horcruxes” were objects where people could hide a fragment of their soul in an attempt to take one step towards immortality. [6] Of course, humans cannot split their souls and hide them in objects, but there are several proposed means by which life extension may be achieved. [1] This is a testimony to the progress within the life extension field, but there remains much room for improvement.

Eat less, live more

Caloric restriction (CR) is one proposed method for life extension. [1] In the CALERIE (Comprehensive Assessment of Long term Effects of Reducing Intake of Energy) trial, 218 non-obese humans were randomised to either a control group or an intervention group. The latter aimed for a 25% reduction from baseline energy intake. At the end of the 2-year study period, the intervention group had significantly greater reductions in circulating levels of TNF-α – an inflammatory marker involved in many age-related diseases. [7] Dr Alexander Miras, winner of the 2014 Nutrition Society Cuthbertson Medal for his research on bariatric surgery, acknowledges that the study was a “good first step,” but argues that “the evidence in humans is lacking.” “A definitive RCT (randomised controlled trial),” Dr Miras continues, “would be very hard, if not impossible.” He also spots a glaring consequence of CR. “My personal approach is to avoid caloric restriction as this leads to hunger which is an unpleasant feeling. I would rather live a shorter life, but enjoy my food.”

Manipulating telomerase

One alternative is modulating telomerase activity – as attempted with the anti-ageing TA-65MD® supplement. [8] Telomeres protect the ends of chromosomes [9]; they resemble the aglets on the ends of shoelaces. Just as shoelaces would unravel without the aglet, chromosomes would lose vital DNA sequences in the absence of telomeres. [9] Our cells divide over time, causing telomeres to shorten. Once the telomere becomes too short, cell division ceases, and short telomeres correlate with cellular ageing. [10] Telomerase is an enzyme that can oppose telomere shortening [10] – it was what Hamlet was to King Claudius; what exercise is to obesity; and what junior doctors, in England, will be to Jeremy Hunt.

Reactivating telomerase in telomerase-deficient mice reversed both neurodegeneration and degeneration of other organs. [11] This proved the concept that boosting telomerase activity could have anti-ageing effects, but there is little proof that this occurs in humans. While the mice were telomerase-deficient, humans normally have some telomerase activity. It is like giving food to someone who has been fasting for hours and to someone who has just eaten a three-course meal – the starved individual would unquestionably benefit more. A 12-month long RCT, involving 117 relatively healthy individuals (age range: 53-87), found that low-dose TA-65 significantly increased telomere length when compared to placebo. High-dose TA-65, however, failed to do so. [12]

Dancing with the devil

What is more worrying than treatments that may be ineffective? Side effects. Telomerase is a double-edged sword and by reducing telomere attrition, it can promote unlimited cell division and cancer. [9] Elizabeth Blackburn, co-winner of the 2009 Nobel Prize in Physiology or Medicine for her role in the discovery of telomerase, has doubts about exploiting the enzyme. Speaking to TIME magazine, she said, “Cancers love telomerase, and a number of cancers up-regulate it like crazy. . . . My feeling would be that if I take anything that would push my telomerase up, I’m playing with fire.” [13]

A cauldron of rewards

CR and boosting telomerase activity are just a small sample of life extending techniques, yet there is the notion that such techniques will be intertwined with risks. However, risks are always weighed against rewards, and Gennady Stolyarov, editor-in-chief of The Rational Argumentator and Chief Executive of the Nevada Transhumanist Party, believes life extension would bring “immense and multifaceted” rewards. “The greatest benefit is the continued existence of the individual who remains alive. Each individual has incalculable moral value and is a universe of ideas, experiences, emotions, and memories. When a person dies, that entire universe is extinguished . . . This is the greatest possible loss, and should be averted if at all possible.” Stolyarov also envisages “major savings to healthcare systems” and that “the achievement of significant life extension would inspire many intelligent people to try to solve other age-old problems.”

Former chairman of the President’s Council on Bioethics, Leon Kass, disagrees with this view and argues that mortality is necessary for “treasuring and appreciating all that life brings.” [14] Hence, increased longevity could lead to an overall reduction in productivity over one’s lifetime. Perhaps Kass is correct, but the array of potential benefits makes it seem unwise to prematurely dismiss life extension. In fact, a survey, which examined the opinions of 605 Australians on life extension, highlighted further benefits – 23% of participants said they could “spend more time with family” and 4% cited the opportunity to experience future societies. [15]

Learning from our mistakes

Conversely, life extension may result in people enduring poor health for longer periods. 28% of participants in the Australian survey highlighted this concern. [15] Current trends in life expectancy reinforce their fears. Professor Janet Lord, director of the Institute of Inflammation and Ageing at the University of Birmingham, explains, “Currently, in most countries in the developed world, life expectancy is increasing at approximately 2 years per decade, but healthspan (the years spent in good health) is only increasing at 1.7 years. This has major consequences . . . as more of later life is spent in poor health.” This is a consequence of treating “killer diseases” – according to Dr Felipe Sierra, director of the Division of Aging Biology at the National Institute on Aging. “The current model in biomedicine,” says Dr Sierra, “is to treat one disease at a time. Let’s imagine you have arthritis; cancer; and are starting to develop Alzheimer’s disease. So what do we do? We treat you for cancer. You now live longer with Alzheimer’s disease and arthritis.” A better approach is clear to Dr Sierra who stresses the importance of compression of morbidity – “the goal is to live longer with less time spent being sick.”

Learning from our successes

Even with Dr Sierra’s approach, individual boredom and social implications, including overpopulation, would still be problems.[16] According to Stolyarov, the boredom argument does not hold up when facing “human creativity and discovery.” He believes humans could never truly be bored as “the number of possible pursuits increases far faster than the ability of any individual to pursue.”

In his novel Death is Wrong, Stolyarov explained that the idea that society could not cope with a rapidly expanding population was historically inaccurate. The current population “is the highest it has ever been, and most people live far longer, healthier, prosperous lives than their ancestors did when the Earth’s population was hundreds of times smaller.” [16] If it has been achieved in the past, who is to say our own society – one far more advanced than any before it – cannot adapt?

The verdict

Life extension research is quietly progressing, and there is a good chance that it will eventually come to fruition. Although there are doubts about current techniques, Dr Sierra draws attention to novel interventions, such as rapamycin, which “delay ageing in mice.” He concludes that the next challenge is to “develop measures than can predict whether an intervention works in a short-term assay.” Such measures would provide the scaffolding for future clinical trials that test life extension techniques.

Given what may be gained, it is no surprise that artificially prolonging life is exciting some in the same way the Tree of Knowledge tempted Eve. The impact on society? Impossible to predict. It would undoubtedly be a big risk, but perhaps in this complex and uncertain scenario, we ought to remember the words of the poet Thomas Stearns Eliot: “Only those who will risk going too far can possibly find out how far one can go.” [17]

Gerrard Jayaratnam is a student of Biomedical Science at Imperial College London.


  1. Stambler I. A History of Life-Extensionism in the Twentieth Century. Ramat Gan: CreateSpace Independent Publishing Platform; 2014.
  2. National Institute on Aging. Living Longer. 2011. https://www.nia.nih.gov/research/publication/global-health-and-aging/living-longer.
  3. World Health Organization. 50 Facts: Global Health situation and trends 1955-2025. 2013. http://www.who.int/whr/1998/media_centre/50facts/en/.
  4. Encyclopaedia Britannica. Epic of Gilgamesh. 2016. http://www.britannica.com/topic/Epic-of-Gilgamesh.
  5. Lloyd DF. The Man Who Would Cheat Death and Rule the Universe. Vision. 2008. http://www.vision.org/visionmedia/history-shi-huang-emperor-china/5818.aspx.
  6. Rowling JK. Harry Potter and the Half-Blood Prince. London: Bloomsbury Publishing; 2005.
  7. Ravussin E, Redman LM, Rochon J, et al. A 2-Year Randomized Controlled Trial of Human Caloric Restriction: Feasibility and Effects on Predictors of Health Span and Longevity. J Gerontol A Biol Sci Med Sci 2015;70:1097-1104.
  8. A. Sciences. What is TA-65®? (n.d.) [Accessed 3rd April 2016]. https://www.tasciences.com/what-is-ta-65/.
  9. De Jesus BB, Blasco MA. Telomerase at the intersection of cancer and aging. Trends Genet 2013;29:513-520.
  10. A. Sciences. Telomeres and Cellular Aging. (n.d.) [Accessed 3rd April 2016]. https://www.tasciences.com/telomeres-and-cellular-aging/.
  11. Jaskelioff M, Muller FL, Paik JH, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase deficient mice. Nature 2011;469:102-106.
  12. Salvador L, Singaravelu G, Harley CB, et al. A Natural Product Telomerase Activator Lengthens Telomeres in Humans: A Randomized, Double Blind, and Placebo Controlled Study. Rejuvenation Res 2016; ahead of print. doi:10.1089/rej.2015.1793.
  13. Kluger J. The antiaging power of a positive attitude. TIME. 2015.
  14. Than K. The Psychological Strain of Living Forever. Live Science. 2006. http://www.livescience.com/10469-psychological-strain-living.html.
  15. Partridge B, Lucke J, Bartlett H, et al. Ethical, social, and personal implications of extended human lifespan identified by members of the public. Rejuvenation Res 2009;12:351-357.
  16. Stolyarov II G. Death is Wrong. 2nd ed. Carson City, Nevada: Rational Argumentator Press; 2013.
  17. The Huffington Post. 11 Beautiful T.S. Eliot Quotes. 2013. http://www.huffingtonpost.com/2013/09/26/ts-eliot-quotes_n_3996010.html.


Will Banning Genetic Engineering Kill You? – Article by Edward Hudgins

No comments yet

Categories: Science, Technology, Tags: , , , , , , , , , , , ,

The New Renaissance HatEdward Hudgins

One headline reads “British baby given genetically-edited immune cells to beat cancer in world first.” Another headline reads “Top biologists debate ban on gene-editing.” It’s a literal life-and-death debate.

And if you care to live, pay attention to this philosophical clash!

Exponential growth in genetic engineering

Genetic engineering is on an exponential growth path. In 2001 the cost of sequencing a human-sized genome was about $100 million. By 2007 the cost was down to $10 million.

layla-richard-genetic-engineeringNow it’s just over $1,000. Scientists and even do-it-yourself biohackers can now cheaply access DNA information that could allow them to discover cures for diseases and much more.

Recently, for example, baby Layla Richards [at right] was diagnosed with leukemia. But when none of the usual treatments worked, doctors created designer immune cells, injected them into the little girl and the treatment worked. She was cured.

Designer babies?

But there have been concerns about such engineering for decades; indeed, precautionary guidelines were drawn up by a group of biologists at the 1975 Asilomar conference in California. And now, at a joint conference in Washington, D.C. of the National Academies of Medicine and Sciences, the Chinese Academy of Sciences and the Royal Society of the United Kingdom, a cutting-edge genetic engineering tool known as CRISPR-Cas9 came under attack because it can be used to edit the genomes of sperm, eggs, and embryos.

National Institutes of Health director Francis Collins argued that the children that would result from such editing “can’t give consent to having their genomes altered” and that “the individuals whose lives are potentially affected by germline manipulation could extend many generations into the future.” Hille Haker, a Catholic theologian from Loyola University Chicago, agreed and proposed a two year ban on all research into such manipulation of genomes. Others argued that such manipulation could lead to “designer babies,” that is, parents using this technology to improve or enhance the intelligence and strength of their children.

These arguments are bizarre to say the least.

Damning to misery

To begin with, there is virtual universal agreement among religious and secular folk alike that from birth and until a stage of maturity at which they can potentially guide their lives by their own reason, the consent of children is not needed when their parents make many potentially life-altering decisions for them. Why should this reasonable rule be different for decisions made by parents before a child is born?

And consider that the principal decisions with gene-editing technology would be to eliminate the possibility of the child later in life having Alzheimer’s or Parkinson’s diseases, cancers, and a host of other ailments that plague humanity. Is it even conceivable that any rational individual would not thank their parents for ensuring their health and longevity? Isn’t this what all parents wish for their children? Why would anyone deny parents the tools to ensure healthy children? How much continued misery and death are those who would delay genetic research or ban this new technology inflicting on parents and children alike?

And so what if the “slippery slope” is parents ensuring that their children are more intelligent or stronger? Right now such traits are a matter of a genetic lottery and every parent hopes for the best. What parent wouldn’t jump at the chance to ensure such beneficial capacities for their children?

A privileged biological elite?

Some might pull out the ugly egalitarian argument that the “rich” could produce biologically elite “superchildren,” leaving the rest of humanity behind: an inferior, impoverished breed to be exploited. But this is the same spurious argument made about every technology that initially allows more prosperous individuals to better themselves ahead of others. We heard two decades ago that only the “rich” would be able to afford computers and the internet, allowing them to be more informed and, thus, enabling them to oppress the downtrodden masses. But exponential changes in technologies ensure that just as computers and the internet have become inexpensive and available to all, so will genetic enhancements become after the techniques are perfected for prosperous beta-testers.

And in any case, just as it is immoral to deprive those who honestly earn their wealth of the fruits of their labor just because others have yet to earn theirs, so it is immoral to deprive them of the opportunity to provide the best biology for their children just because it will take time for the technology to become available to all.

Precautionary principle or proactionary principle?

Many opponents of genetic engineering fall back on the so-called “precautionary principle.” This is the notion that if products or technologies pose any imaginable risks—often highly speculative or vague ones unsupported by any sound science—then such products or technologies should be severely restricted, regulated, or banned. The burden is placed on innovators to prove that no harm to humans will result from their innovations.

But had this standard been applied in the past, we would not have the modern world today. Indeed, by this standard, precaution would dictate that fire was just too dangerous for humans and that cavemen should have been barred from rubbing two sticks together.

Max More, a founder of the transhumanist philosophy, offers instead the “proactionary principle.” He argues that “People’s freedom to innovate technologically is highly valuable, even critical, to humanity.” And “Progress should not bow to fear, but should proceed with eyes wide open.” And that we need to “Protect the freedom to innovate and progress while thinking and planning intelligently for collateral effects.”

Freedom to progress

Fortunately, more individuals than More reason this way. At the D.C. conference, University of Manchester Professor John Harris argued “We all have an inescapable moral duty: To continue with scientific investigation to the point at which we can make a rational choice. We are not yet at that point. It seems to me, consideration of a moratorium is the wrong course. Research is necessary.” But the opinion of academics one way or another might not matter. Just as it was do-it-yourselfers and innovators in garages that made the computer and information revolution, genetic innovations might well come from such achievers as well. But they won’t do it if they are not free to do so.

If you value your life and the lives and health of your children, you had better work for this freedom to innovate.

Dr. Edward Hudgins directs advocacy and is a senior scholar for The Atlas Society, the center for Objectivism in Washington, D.C.

Copyright The Atlas Society. For more information, please visit www.atlassociety.org.