Browsed by
Tag: physicalism

Wireless Synapses, Artificial Plasticity, and Neuromodulation – Article by Franco Cortese

Wireless Synapses, Artificial Plasticity, and Neuromodulation – Article by Franco Cortese

The New Renaissance Hat
Franco Cortese
May 21, 2013
******************************
This essay is the fifth chapter in Franco Cortese’s forthcoming e-book, I Shall Not Go Quietly Into That Good Night!: My Quest to Cure Death, published by the Center for Transhumanity. The first four chapters were previously published on The Rational Argumentator as “The Moral Imperative and Technical Feasibility of Defeating Death”, “Immortality: Material or Ethereal? Nanotech Does Both!, “Concepts for Functional Replication of Biological Neurons“, and “Gradual Neuron Replacement for the Preservation of Subjective-Continuity“.
***

Morphological Changes for Neural Plasticity

The finished physical-functionalist units would need the ability to change their emergent morphology not only for active modification of single-neuron functionality but even for basic functional replication of normative neuron behavior, by virtue of needing to take into account neural plasticity and the way that morphological changes facilitate learning and memory. My original approach involved the use of retractable, telescopic dendrites and axons (with corresponding internal retractable and telescopic dendritic spines and axonal spines, respectively) activated electromechanically by the unit-CPU. For morphological changes, by providing the edges of each membrane section with an electromechanical hinged connection (i.e., a means of changing the angle of inclination between immediately adjacent sections), the emergent morphology can be controllably varied. This eventually developed to consist of an internal compartment designed so as to detach a given membrane section, move it down into the internal compartment of the neuronal soma or terminal, transport it along a track that stores alternative membrane sections stacked face-to-face (to compensate for limited space), and subsequently replaces it with a membrane section containing an alternate functional component (e.g., ion pump, ion channel, [voltage-gated or ligand-gated], etc.) embedded therein. Note that this approach was also conceived of as an alternative to retractable axons/dendrites and axonal/dendritic spines, by attaching additional membrane sections with a very steep angle of inclination (or a lesser inclination with a greater quantity of segments) and thereby creating an emergent section of artificial membrane that extends out from the biological membrane in the same way as axons and dendrites.

However, this approach was eventually supplemented by one that necessitates less technological infrastructure (i.e., that was simpler and thus more economical and realizable). If the size of the integral-membrane components is small enough (preferably smaller than their biological analogues), then differential activation of components or membrane sections would achieve the same effect as changing the organization or type of integral-membrane components, effectively eliminating the need at actually interchange membrane sections at all.

Active Neuronal Modulation and Modification

The technological and methodological infrastructure used to facilitate neural plasticity can also be used for active modification and modulation of neural behavior (and the emergent functionality determined by local neuronal behavior) towards the aim of mental augmentation and modification. Potential uses already discussed include mental amplification (increasing or augmenting existing functional modalities—i.e., intelligence, emotion, morality), or mental augmentation (the creation of categorically new functional and experiential modalities). While the distinction between modification and modulation isn’t definitive, a useful way of differentiating them is to consider modification as morphological changes creating new functional modalities, and to consider modulation as actively varying the operation of existing structures/processes through not morphological change but rather changes to the operation of integral-membrane components or the properties of the local environment (e.g., increasing local ionic concentrations).

Modulation: A Less Discontinuous Alternative to Morphological Modification

The use of modulation to achieve the effective results of morphological changes seemed like a hypothetically less discontinuous alternative to morphological changes (and thus as having a hypothetically greater probability of achieving subjective-continuity). I’m more dubious in regards to the validity of this approach now, because the emergent functionality (normatively determined by morphological features) is still changed in an effectively equivalent manner.

The Eventual Replacement of Neural Ionic Solutions with Direct Electric Fields

Upon full gradual replacement of the CNS with physical-functionalist equivalents, the preferred embodiment consisted of replacing the ionic solutions with electric fields that preserve the electric potential instantiated by the difference in ionic concentrations on the respective sides of the membrane. Such electric fields can be generated directly, without recourse to electrochemicals for manifesting them. In such a case the integral-membrane components would be replaced by a means of generating and maintaining a static and/or dynamic electric field on either side of the membrane, or even merely of generating an electrical potential (i.e., voltage—a broader category encompassing electric fields) with solid-state electronics.

This procedure would allow a fraction of the speedups (that is, increased rate of subjective perception of time, which extends to speed of thought) resulting from emulatory (i.e., strictly computational) replication-methods by no longer being limited to the rate of passive ionic diffusion—now instead being limited to the propagation velocity of electric or electromagnetic fields.

Wireless Synapses

If we replace the physical synaptic connections the NRU uses to communicate (with both existing biological neurons and with other NRUs) with a wireless means of synaptic-transmission, we can preserve the same functionality (insofar as it is determined by synaptic connectivity) while allowing any NRU to communicate with any other NRU or biological neuron in the brain at potentially equal speed. First we need a way of converting the output of an NRU or biological neuron into information that can be transmitted wirelessly. For cyber-physicalist-functionalist NRUs, regardless of their sub-class, this requires no new technological infrastructure because they already deal with 2nd-order (i.e., not structurally or directly embodied) information; informational-functional NRU deals solely in terms of this type of information, and the cyber-physical-systems sub-class of the physicalist-functionalist NRUs deal with this kind of information in the intermediary stage between sensors and actuators—and consequently, converting what would have been a sequence of electromechanical actuations into information isn’t a problem. Only the passive-physicalist-functionalist NRU class requires additional technological infrastructure to accomplish this, because they don’t already use computational operational-modalities for their normative operation, whereas the other NRU classes do.

We dispose receivers within the range of every neuron (or alternatively NRU) in the brain, connected to actuators – the precise composition of which depends on the operational modality of the receiving biological neuron or NRU. The receiver translates incoming information into physical actuations (e.g., the release of chemical stores), thereby instantiating that informational output in physical terms. For biological neurons, the receiver’s actuators would consist of a means of electrically stimulating the neuron and releasable chemical stores of neurotransmitters (or ionic concentrations as an alternate means of electrical stimulation via the manipulation of local ionic concentrations). For informational-functionalist NRUs, the information is already in a form it can accept; it can simply integrate that information into its extant model. For cyber-physicalist-NRUs, the unit’s CPU merely needs to be able to translate that information into the sequence in which it must electromechanically actuate its artificial ion-channels. For the passive-physicalist (i.e., having no computational hardware devoted to operating individual components at all, operating according to physical feedback between components alone) NRUs, our only option appears to be translating received information into the manipulation of the local environment to vicariously affect the operation of the NRU (e.g., increasing electric potential through manipulations of local ionic concentrations, or increasing the rate of diffusion via applied electric fields to attract ions and thus achieve the same effect as a steeper electrochemical gradient or potential-difference).

The technological and methodological infrastructure for this is very similar to that used for the “integrational NRUs”, which allows a given NRU-class to communicate with either existing biological neurons or NRUs of an alternate class.

Integrating New Neural Nets Without Functional Distortion of Existing Regions

The use of artificial neural networks (which here will designate NRU-networks that do not replicate any existing biological neurons, rather than the normative Artificial Neuron Networks mentioned in the first and second parts of this essay), rather than normative neural prosthetics and BCI, was the preferred method of cognitive augmentation (creation of categorically new functional/experiential modalities) and cognitive amplification (the extension of existing functional/experiential modalities). Due to functioning according to the same operational modality as existing neurons (whether biological or artificial-replacements), they can become a continuous part of our “selves”, whereas normative neural prosthetics and BCI are comparatively less likely to be capable of becoming an integral part of our experiential continuum (or subjective sense of self) due to their significant operational dissimilarity in relation to biological neural networks.

A given artificial neural network can be integrated with existing biological networks in a few ways. One is interior integration, wherein the new neural network is integrated so as to be “inter-threaded”, in which a given artificial-neuron is placed among one or multiple existing networks. The networks are integrated and connected on a very local level. In “anterior” integration, the new network would be integrated in a way comparable to the connection between separate cortical columns, with the majority of integration happening at the peripherals of each respective network or cluster.

If the interior integration approach is used then the functionality of the region may be distorted or negated by virtue of the fact that neurons that once took a certain amount of time to communicate now take comparatively longer due to the distance between them having been increased to compensate for the extra space necessitated by the integration of the new artificial neurons. Thus in order to negate these problematizing aspects, a means of increasing the speed of communication (determined by both [a] the rate of diffusion across the synaptic junction and [b] the rate of diffusion across the neuronal membrane, which in most cases is synonymous with the propagation velocity in the membrane – the exception being myelinated axons, wherein a given action potential “jumps” from node of Ranvier to node of Ranvier; in these cases propagation velocity is determined by the thickness and length of the myelinated sections) must be employed.

My original solution was the use of an artificial membrane morphologically modeled on a myelinated axon that possesses very high capacitance (and thus high propagation velocity), combined with increasing the capacitance of the existing axon or dendrite of the biological neuron. The cumulative capacitance of both is increased in proportion to how far apart they are moved. In this way, the propagation velocity of the existing neuron and the connector-terminal are increased to allow the existing biological neurons to communicate as fast as they would have prior to the addition of the artificial neural network. This solution was eventually supplemented by the wireless means of synaptic transmission described above, which allows any neuron to communicate with any other neuron at equal speed.

Gradually Assigning Operational Control of a Physical NRU to a Virtual NRU

This approach allows us to apply the single-neuron gradual replacement facilitated by the physical-functionalist NRU to the informational-functionalist (physically embodied) NRU. A given section of artificial membrane and its integral membrane components are modeled. When this model is functioning in parallel (i.e., synchronization of operative states) with its corresponding membrane section, the normative operational routines of that artificial membrane section (usually controlled by the unit’s CPU and its programming) are subsequently taken over by the computational model—i.e., the physical operation of the artificial membrane section is implemented according to and in correspondence with the operative states of the model. This is done iteratively, with the informationalist-functionalist NRU progressively controlling more and more sections of the membrane until the physical operation of the whole physical-functionalist NRU is controlled by the informational operative states of the informationalist-functionalist NRU. While this concept sprang originally from the approach of using multiple gradual-replacement phases (with a class of model assigned to each phase, wherein each is more dissimilar to the original than the preceding phase, thereby increasing the cumulative degree of graduality), I now see it as a way of facilitating sub-neuron gradual replacement in computational NRUs. Also note that this approach can be used to go from existing biological membrane-sections to a computational NRU, without a physical-functionalist intermediary stage. This, however, is comparatively more complex because the physical-functionalist NRU already has a means of modulating its operative states, whereas the biological neuron does not. In such a case the section of lipid bilayer membrane would presumably have to be operationally isolated from adjacent sections of membrane, using a system of chemical inventories (of either highly concentrated ionic solution or neurotransmitters, depending on the area of membrane) to produce electrochemical output and chemical sensors to accept the electrochemical input from adjacent sections (i.e., a means of detecting depolarization and hyperpolarization). Thus to facilitate an action potential, for example, the chemical sensors would detect depolarization, the computational NRU would then model the influx of ions through the section of membrane it is replacing and subsequently translate the effective results impinging upon the opposite side to that opposite edge via either the release of neurotransmitters or the manipulation of local ionic concentrations so as to generate the required depolarization at the adjacent section of biological membrane.

Integrational NRU

This consisted of a unit facilitating connection between emulatory (i.e., informational-functionalist) units and existing biological neurons. The output of the emulatory units is converted into chemical and electrical output at the locations where the emulatory NRU makes synaptic connection with other biological neurons, facilitated through electric stimulation or the release of chemical inventories for the increase of ionic concentrations and the release of neurotransmitters, respectively. The input of existing biological neurons making synaptic connections with the emulatory NRU is read, likewise, by chemical and electrical sensors and is converted into informational input that corresponds to the operational modality of the informationalist-functionalist NRU classes.

Solutions to Scale

If we needed NEMS or something below the scale of the present state of MEMS for the technological infrastructure of either (a) the electromechanical systems replicating a given section of neuronal membrane, or (b) the systems used to construct and/or integrate the sections, or those used to remove or otherwise operationally isolate the existing section of lipid bilayer membrane being replaced from adjacent sections, a postulated solution consisted of taking the difference in length between the artificial membrane section and the existing bilipid section (which difference is determined by how small we can construct functionally operative artificial ion-channels) and incorporating this as added curvature in the artificial membrane-section such that its edges converge upon or superpose with the edges of the space left by the removal the lipid bilayer membrane-section. We would also need to increase the propagation velocity (typically determined by the rate of ionic influx, which in turn is typically determined by the concentration gradient or difference in the ionic concentrations on the respective sides of the membrane) such that the action potential reaches the opposite end of the replacement section at the same time that it would normally have via the lipid bilayer membrane. This could be accomplished directly by the application of electric fields with a charge opposite that of the ions (which would attract them, thus increasing the rate of diffusion), by increasing the number of open channels or the diameter of existing channels, or simply by increasing the concentration gradient through local manipulation of extracellular and/or intracellular ionic concentration—e.g., through concentrated electrolyte stores of the relevant ion that can be released to increase the local ionic concentration.

If the degree of miniaturization is so low as to make this approach untenable (e.g., increasing curvature still doesn’t allow successful integration) then a hypothesized alternative approach was to increase the overall space between adjacent neurons, integrate the NRU, and replace normative connection with chemical inventories (of either ionic compound or neurotransmitter) released at the site of existing connection, and having the NRU (or NRU sub-section—i.e., artificial membrane section) wirelessly control the release of such chemical inventories according to its operative states.

The next chapter describes (a) possible physical bases for subjective-continuity through a gradual-uploading procedure and (b) possible design requirements for in vivo brain-scanning and for systems to construct and integrate the prosthetic neurons with the existing biological brain.

Franco Cortese is an editor for Transhumanity.net, as well as one of its most frequent contributors.  He has also published articles and essays on Immortal Life and The Rational Argumentator. He contributed 4 essays and 7 debate responses to the digital anthology Human Destiny is to Eliminate Death: Essays, Rants and Arguments About Immortality.

Franco is an Advisor for Lifeboat Foundation (on its Futurists Board and its Life Extension Board) and contributes regularly to its blog.

Bibliography

Project Avatar (2011). Retrieved February 28, 2013 from http://2045.com/tech2/

Concepts for Functional Replication of Biological Neurons – Article by Franco Cortese

Concepts for Functional Replication of Biological Neurons – Article by Franco Cortese

The New Renaissance Hat
Franco Cortese
May 18, 2013
******************************
This essay is the third chapter in Franco Cortese’s forthcoming e-book, I Shall Not Go Quietly Into That Good Night!: My Quest to Cure Death, published by the Center for Transhumanity. The first two chapters were previously published on The Rational Argumentator as “The Moral Imperative and Technical Feasibility of Defeating Death” and “Immortality: Material or Ethereal? Nanotech Does Both!“.
***

The simplest approach to the functional replication of biological neurons I conceived of during this period involved what is normally called a “black-box” model of a neuron. This was already a concept in the wider brain-emulation community, but I was yet to find out about it. This is even simpler than the mathematically weighted Artificial Neurons discussed in the previous chapter. Rather than emulating or simulating the behavior of a neuron, (i.e, using actual computational—or more generally signal—processing) we (1) determine the range of input values that a neuron responds to, (2) stimulate the neuron at each interval (the number of intervals depending on the precision of the stimulus) within that input-range, and (3) record the corresponding range of outputs.

This reduces the neuron to essentially a look-up-table (or, more formally, an associative array). The input ranges I originally considered (in 2007) consisted of a range of electrical potentials, but later (in 2008) were developed to include different cumulative organizations of specific voltage values (i.e., some inputs activated and others not) and finally the chemical input and outputs of neurons. The black-box approach was eventually seen as being applied to the sub-neuron scale—e.g., to sections of the cellular membrane. This creates a greater degree of functional precision, bringing the functional modality of the black-box NRU-class in greater accordance with the functional modality of biological neurons. (I.e., it is closer to biological neurons because they do in fact process multiple inputs separately, rather than singular cumulative sums at once, as in the previous versions of the black-box approach.) We would also have a higher degree of variability for a given quantity of inputs.

I soon chanced upon literature dealing with MEMS (micro-electro-mechanical systems) and NEMS (nano-electro-mechanical systems), which eventually led me to nanotechnology and its use in nanosurgery in particular. I saw nanotechnology as the preferred technological infrastructure regardless of the approach used; its physical nature (i.e., operational and functional modalities) could facilitate the electrical and chemical processes of the neuron if the physicalist-functionalist (i.e., physically embodied or ‘prosthetic’) approach proved either preferable or required, while the computation required for its normative functioning (regardless of its particular application) assured that it could facilitate the informationalist-functionalist (i.e., computational emulation or simulation) of neurons if that approach proved preferable. This was true of MEMS as well, with the sole exception of not being able to directly synthesize neurotransmitters via mechanosynthesis, instead being limited in this regard to the release of pre-synthesized biochemical inventories. Thus I felt that I was able to work on conceptual development of the methodological and technological infrastructure underlying both (or at least variations to the existing operational modalities of MEMS and NEMS so as to make them suitable for their intended use), without having to definitively choose one technological/methodological infrastructure over the other. Moreover, there could be processes that are reducible to computation, yet still fail to be included in a computational emulation due to our simply failing to discover the principles underlying them. The prosthetic approach had the potential of replicating this aspect by integrating such a process, as it exists in the biological environment, into its own physical operation, and perform iterative maintenance or replacement of the biological process, until such a time as to be able to discover the underlying principles of those processes (which is a prerequisite for discovering how they contribute to the emergent computation occurring in the neuron) and thus for their inclusion in the informationalist-functionalist approach.

Also, I had by this time come across the existing approaches to Mind-Uploading and Whole-Brain Emulation (WBE), including Randal Koene’s minduploading.org, and realized that the notion of immortality through gradually replacing biological neurons with functional equivalents wasn’t strictly my own. I hadn’t yet come across Kurzweil’s thinking in regard to gradual uploading described in The Singularity is Near (where he suggests a similarly nanotechnological approach), and so felt that there was a gap in the extant literature in regard to how the emulated neurons or neural networks were to communicate with existing biological neurons (which is an essential requirement of gradual uploading and thus of any approach meant to facilitate subjective-continuity through substrate replacement). Thus my perceived role changed from the father of this concept to filling in the gaps and inconsistencies in the already-extant approach and in further developing it past its present state. This is another aspect informing my choice to work on and further varietize both the computational and physical-prosthetic approach—because this, along with the artificial-biological neural communication problem, was what I perceived as remaining to be done after discovering WBE.

The anticipated use of MEMS and NEMS in emulating the physical processes of the neurons included first simply electrical potentials, but eventually developed to include the chemical aspects of the neuron as well, in tandem with my increasing understanding of neuroscience. I had by this time come across Drexler’s Engines of Creation, which was my first introduction to antecedent proposals for immortality—specifically his notion of iterative cellular upkeep and repair performed by nanobots. I applied his concept of mechanosynthesis to the NRUs to facilitate the artificial synthesis of neurotransmitters. I eventually realized that the use of pre-synthesized chemical stores of neurotransmitters was a simpler approach that could be implemented via MEMS, thus being more inclusive for not necessitating nanotechnology as a required technological infrastructure. I also soon realized that we could eliminate the need for neurotransmitters completely by recording how specific neurotransmitters affect the nature of membrane-depolarization at the post-synaptic membrane and subsequently encoding this into the post-synaptic NRU (i.e., length and degree of depolarization or hyperpolarization, and possibly the diameter of ion-channels or differential opening of ion-channels—that is, some and not others) and assigning a discrete voltage to each possible neurotransmitter (or emergent pattern of neurotransmitters; salient variables include type, quantity and relative location) such that transmitting that voltage makes the post-synaptic NRU’s controlling-circuit implement the membrane-polarization changes (via changing the number of open artificial-ion-channels, or how long they remain open or closed, or their diameter/porosity) corresponding to the changes in biological post-synaptic membrane depolarization normally caused by that neurotransmitter.

In terms of the enhancement/self-modification side of things, I also realized during this period that mental augmentation (particularly the intensive integration of artificial-neural-networks with the existing brain) increases the efficacy of gradual uploading by decreasing the total portion of your brain occupied by the biological region being replaced—thus effectively making that portion’s temporary operational disconnection from the rest of the brain more negligible to concerns of subjective-continuity.

While I was thinking of the societal implications of self-modification and self-modulation in general, I wasn’t really consciously trying to do active conceptual work (e.g., working on designs for pragmatic technologies and methodologies as I was with limitless-longevity) on this side of the project due to seeing the end of death as being a much more pressing moral imperative than increasing our degree of self-determination. The 100,000 unprecedented calamities that befall humanity every day cannot wait; for these dying fires it is now or neverness.

Virtual Verification Experiments

The various alternative approaches to gradual substrate-replacement were meant to be alternative designs contingent upon various premises for what was needed to replicate functionality while retaining subjective-continuity through gradual replacement. I saw the various embodiments as being narrowed down through empirical validation prior to any whole-brain replication experiments. However, I now see that multiple alternative approaches—based, for example, on computational emulation (informationalist-functionalist) and physical replication (physicalist-functionalist) (these are the two main approaches thus far discussed) would have concurrent appeal to different segments of the population. The physicalist-functionalist approach might appeal to wide numbers of people who, for one metaphysical prescription or another, don’t believe enough in the computational reducibility of mind to bet their lives on it.

These experiments originally consisted of applying sensors to a given biological neuron, and constructing NRUs based on a series of variations on the two main approaches, running each and looking for any functional divergence over time. This is essentially the same approach outlined in the WBE Roadmap, which I was yet to discover at this point, that suggests a validation approach involving experiments done on single neurons before moving on to the organismal emulation of increasingly complex species up to and including the human. My thinking in regard to these experiments evolved over the next few years to also include the some novel approaches that I don’t think have yet been discussed in communities interested in brain-emulation.

An equivalent physical or computational simulation of the biological neuron’s environment is required to verify functional equivalence, as otherwise we wouldn’t be able to distinguish between functional divergence due to an insufficient replication-approach/NRU-design and functional divergence due to difference in either input or operation between the model and the original (caused by insufficiently synchronizing the environmental parameters of the NRU and its corresponding original). Isolating these neurons from their organismal environment allows the necessary fidelity (and thus computational intensity) of the simulation to be minimized by reducing the number of environmental variables affecting the biological neuron during the span of the initial experiments. Moreover, even if this doesn’t give us a perfectly reliable model of the efficacy of functional replication given the amount of environmental variables one expects a neuron belonging to a full brain to have, it is a fair approximator. Some NRU designs might fail in a relatively simple neuronal environment and thus testing all NRU designs using a number of environmental variables similar to the biological brain might be unnecessary (and thus economically prohibitive) given its cost-benefit ratio. And since we need to isolate the neuron to perform any early non-whole-organism experiments (i.e., on individual neurons) at all, having precise control over the number and nature of environmental variables would be relatively easy, as this is already an important part of the methodology used for normative biological experimentation anyways—because lack of control over environmental variables makes for an inconsistent methodology and thus for unreliable data.

And as we increase to the whole-network and eventually organismal level, a similar reduction of the computational requirements of the NRU’s environmental simulation is possible by replacing the inputs or sensory mechanisms (from single photocell to whole organs) with VR-modulated input. The required complexity and thus computational intensity of a sensorially mediated environment can be vastly minimized if the normative sensory environment of the organism is supplanted with a much-simplified VR simulation.

Note that the efficacy of this approach in comparison with the first (reducing actual environmental variables) is hypothetically greater because going from simplified VR version to the original sensorial environment is a difference, not of category, but of degree. Thus a potentially fruitful variation on the first experiment (physical reduction of a biological neuron’s environmental variables) would be not the complete elimination of environmental variables, but rather decreasing the range or degree of deviation in each variable, including all the categories and just reducing their degree.

Anecdotally, one novel modification conceived during this period involves distributing sensors (operatively connected to the sensory areas of the CNS) in the brain itself, so that we can viscerally sense ourselves thinking—the notion of metasensation: a sensorial infinite regress caused by having sensors in the sensory modules of the CNS, essentially allowing one to sense oneself sensing oneself sensing.

Another is a seeming refigurement of David Pearce’s Hedonistic Imperative—namely, the use of active NRU modulation to negate the effects of cell (or, more generally, stimulus-response) desensitization—the fact that the more times we experience something, or indeed even think something, the more it decreases in intensity. I felt that this was what made some of us lose interest in our lovers and become bored by things we once enjoyed. If we were able to stop cell desensitization, we wouldn’t have to needlessly lose experiential amplitude for the things we love.

In the next chapter I will describe the work I did in the first months of 2008, during which I worked almost wholly on conceptual varieties of the physically embodied prosthetic (i.e., physical-functionalist) approach (particularly in gradually replacing subsections of individual neurons to increase how gradual the cumulative procedure is) for several reasons:

The original utility of ‘hedging our bets’ as discussed earlier—developing multiple approaches increases evolutionary diversity; thus, if one approach fails, we have other approaches to try.

I felt the computational side was already largely developed in the work done by others in Whole-Brain Emulation, and thus that I would be benefiting the larger objective of indefinite longevity more by focusing on those areas that were then comparatively less developed.

The perceived benefit of a new approach to subjective-continuity through a substrate-replacement procedure aiming to increase the likelihood of gradual uploading’s success by increasing the procedure’s cumulative degree of graduality. The approach was called Iterative Gradual Replacement and consisted of undergoing several gradual-replacement procedures, wherein the class of NRU used becomes progressively less similar to the operational modality of the original, biological neurons with each iteration; the greater the number of iterations used, the less discontinuous each replacement-phase is in relation to its preceding and succeeding phases. The most basic embodiment of this approach would involve gradual replacement with physical-functionalist (prosthetic) NRUs that in turn are then gradually replaced with informational-physicalist (computational/emulatory) NRUs. My qualms with this approach today stem from the observation that the operational modalities of the physically embodied NRUs seem as discontinuous in relation to the operational modalities of the computational NRUs as the operational modalities of the biological neurons does. The problem seems to result from the lack of an intermediary stage between physical embodiment and computational (or second-order) embodiment.

Franco Cortese is an editor for Transhumanity.net, as well as one of its most frequent contributors.  He has also published articles and essays on Immortal Life and The Rational Argumentator. He contributed 4 essays and 7 debate responses to the digital anthology Human Destiny is to Eliminate Death: Essays, Rants and Arguments About Immortality.

Franco is an Advisor for Lifeboat Foundation (on its Futurists Board and its Life Extension Board) and contributes regularly to its blog.

Bibliography

Embedded Processor. (2013). In Encyclopædia Britannica. Retrieved from http://www.britannica.com/EBchecked/topic/185535/embedded-processor

Jerome, P. (1980). Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Journal or Neuroscience Methods, 2 (1), 19-31.

Wolf, W. & (March 2009). Cyber-physical Systems. In Embedded Computing. Retrieved February 28, 2013 from http://www.jiafuwan.net/download/cyber_physical_systems.pdf

Immortality: Material or Ethereal? Nanotech Does Both! – Article by Franco Cortese

Immortality: Material or Ethereal? Nanotech Does Both! – Article by Franco Cortese

The New Renaissance Hat
Franco Cortese
May 11, 2013
******************************

This essay is the second chapter in Franco Cortese’s forthcoming e-book, I Shall Not Go Quietly Into That Good Night!: My Quest to Cure Death, published by the Center for Transhumanity. The first chapter was previously published on The Rational Argumentator as “The Moral Imperative and Technical Feasibility of Defeating Death“.

In August 2006 I conceived of the initial cybernetic brain-transplant procedure. It originated from a very simple, even intuitive sentiment: if there were heart and lung machines and prosthetic organs, then why couldn’t these be integrated in combination with modern (and future) robotics to keep the brain alive past the death of its biological body? I saw a possibility, felt its magnitude, and threw myself into realizing it. I couldn’t think of a nobler quest than the final eradication of involuntary death, and felt willing to spend the rest of my life trying to make it happen.

First I collected research on organic brain transplantation, on maintaining the brain’s homeostatic and regulatory mechanisms outside the body (or in this case without the body), on a host of prosthetic and robotic technologies (including sensory prosthesis and substitution), and on the work in Brain-Computer-Interface technologies that would eventually allow a given brain to control its new, non-biological body—essentially collecting the disparate mechanisms and technologies that would collectively converge to facilitate the creation of a fully cybernetic body to house the organic brain and keep it alive past the death of its homeostatic and regulatory organs.

I had by this point come across online literature on Artificial Neurons (ANs) and Artificial Neural Networks (ANNs), which are basically simplified mathematical models of neurons meant to process information in a way coarsely comparable to them. There was no mention in the literature of integrating them with existing neurons or for replacing existing neurons towards the objective of immortality ; their use was merely as an interesting approach to computation particularly optimal to certain situations. While artificial neurons can be run on general-purpose hardware (massively parallel architectures being the most efficient for ANNs, however), I had something more akin to neuromorphic hardware in mind (though I wasn’t aware of that just yet).

At its most fundamental level, Artificial Neurons need not even be physical at all. Their basic definition is a mathematical model roughly based on neuronal operation – and there is nothing precluding that model from existing solely on paper, with no actual computation going on. When I discovered them, I had thought that a given artificial neuron was a physically-embodied entity, rather than a software simulation. – i.e., an electronic device that operates in a way comparable to biological neurons.  Upon learning that they were mathematical models however, and that each AN needn’t be a separate entity from the rest of the ANs in a given AN Network, I saw no problem in designing them so as to be separate physical entities (which they needed to be in order to fit the purposes I had for them – namely, the gradual replacement of biological neurons with prosthetic functional equivalents). Each AN would be a software entity run on a piece of computational substrate, enclosed in a protective casing allowing it to co-exist with the biological neurons already in-place. The mathematical or informational outputs of the simulated neuron would be translated into biophysical, chemical, and electrical output by operatively connecting the simulation to an appropriate series of actuators (which could range from being as simple as producing electric fields or currents, to the release of chemical stores of neurotransmitters) and likewise a series of sensors to translate biophysical, chemical, and electrical properties into the mathematical or informational form they would need to be in to be accepted as input by the simulated AN.

Thus at this point I didn’t make a fundamental distinction between replicating the functions and operations of a neuron via physical embodiment (e.g., via physically embodied electrical, chemical, and/or electromechanical systems) or via virtual embodiment (usefully considered as 2nd-order embodiment, e.g., via a mathematical or computational model, whether simulation or emulation, run on a 1st-order physically embodied computational substrate).

The potential advantages, disadvantages, and categorical differences between these two approaches were still a few months away. When I discovered ANs, still thinking of them as physically embodied electronic devices rather than as mathematical or computational models, I hadn’t yet moved on to ways of preserving the organic brain itself so as to delay its organic death. Their utility in constituting a more permanent, durable, and readily repairable supplement for our biological neurons wasn’t yet apparent.

I initially saw their utility as being intelligence amplification, extension and modification through their integration with the existing biological brain. I realized that they were categorically different than Brain-Computer Interfaces (BCIs) and normative neural prosthesis for being able to become an integral and continuous part of our minds and personalities – or more properly the subjective, experiential parts of our minds. If they communicated with single neurons and interact with them on their own terms—if the two were operationally indistinct—then they could become a continuous part of us in a way that didn’t seem possible for normative BCI due to their fundamental operational dissimilarity with existing biological neural networks. I also collected research on the artificial synthesis and regeneration of biological neurons as an alternative to ANs. This approach would replace an aging or dying neuron with an artificially synthesized but still structurally and operationally biological neuron, so as to maintain the aging or dying neuron’s existing connections and relative location. I saw this procedure (i.e., adding artificial or artificially synthesized but still biological neurons to the existing neurons constituting our brains, not yet for the purposes of gradually replacing the brain but instead for the purpose of mental expansion and amplification) as not only allowing us to extend our existing functional and experiential modalities (e.g., making us smarter through an increase in synaptic density and connectivity, and an increase in the number of neurons in general) but even to create fundamentally new functional and experiential modalities that are categorically unimaginable to us now via the integration of wholly new Artificial Neural Networks embodying such new modalities. Note that I saw this as newly possible with my cybernetic-body approach because additional space could be made for the additional neurons and neural networks, whereas the degree with which we could integrate new, artificial neural networks in a normal biological body would be limited by the available volume of the unmodified skull.

Before I discovered ANs, I speculated in my notes as to whether the “bionic nerves” alluded to in some of the literature I had collected by this point (specifically regarding BCI, neural prosthesis, and the ability to operatively connect a robotic prosthetic extremity – e.g., an arm or a leg – via BCI) could be used to extend the total number of neurons and synaptic connections in the biological brain. This sprang from my knowledge on the operational similarities between neurons and muscle cells, both of the larger class of excitable cells.

Kurzweil’s cyborgification approach (i.e., that we could integrate non-biological systems with our biological brains to such an extent that the biological portions become so small as to be negligible to our subjective-continuity when they succumb to cell-death, thus achieving effective immortality without needing to actually replace any of our existing biological neurons at all) may have been implicit in this concept. I envisioned our brains increasing in size many times over and thus that the majority of our mind would be embodied or instantiated in larger part by the artificial portion than by the biological portions; the fact that the degree with which the loss of a part of our brain will affect our emergent personalities depends on how big (other potential metrics alternative to size include connectivity and the degree with which other systems depend on that potion for their own normative operation) that lost part is in comparison to the total size of the brain, the loss of a lobe being much worse than the loss of a neuron, follows naturally from this initial premise. The lack of any explicit statement of this realization in my notes during this period, however, makes this mere speculation.

It wasn’t until November 11, 2006, that I had the fundamental insight underlying mind-uploading—that the replacement of existing biological neurons with non-biological functional equivalents that maintain the existing relative location and connection of such biological neurons could very well facilitate maintaining the memory and personality embodied therein or instantiated thereby—essentially achieving potential technological immortality, since the approach is based on replacement and iterations of replacement-cycles can be run indefinitely. Moreover, the fact that we would be manufacturing such functional equivalents ourselves means that we could not only diagnose potential eventual dysfunctions easier and with greater speed, but we could manufacture them so as to have readily replaceable parts, thus simplifying the process of physically remediating any such potential dysfunction or operational degradation, even going so far as to include systems for the safe import and export of replacement components or as to make all such components readily detachable, so that we don’t have to cause damage to adjacent structures and systems in the process of removing a given component.

Perhaps it wasn’t so large a conceptual step from knowledge of the existence of computational models of neurons to the realization of using them to replace existing biological neurons towards the aim of immortality. Perhaps I take too much credit for independently conceiving both the underlying conceptual gestalt of mind-uploading, as well as some specific technologies and methodologies for its pragmatic technological implementation. Nonetheless, it was a realization I arrived at on my own, and was one that I felt would allow us to escape the biological death of the brain itself.

While I was aware (after a little more research) that ANNs were mathematical (and thus computational) models of neurons, hereafter referred to as the informationalist-functionalist approach, I felt that a physically embodied (i.e., not computationally emulated or simulated) prosthetic approach, hereafter referred to as the physicalist-functionalist approach, would be a better approach to take. This was because even if the brain were completely reducible to computation, a prosthetic approach would necessarily facilitate the computation underlying the functioning of the neuron (as the physical operations of biological neurons do presently), and if the brain proved to be computationally irreducible, then the prosthetic approach would in such a case presumably preserve whatever salient physical processes were necessary. So the prosthetic approach didn’t necessitate the computational-reducibility premise – but neither did it preclude such a view, thereby allowing me to hedge my bets and increase the cumulative likelihood of maintaining subjective-continuity of consciousness through substrate-replacement in general.

This marks a telling proclivity recurrent throughout my project: the development of mutually exclusive and methodologically and/or technologically alternate systems for a given objective, each based upon alternate premises and contingencies – a sort of possibilizational web unfurling fore and outward. After all, if one approach failed, then we had alternate approaches to try. This seemed like the work-ethic and conceptualizational methodology that would best ensure the eventual success of the project.

I also had less assurance in the sufficiency of the informational-functionalist approach at the time, stemming mainly from a misconception with the premises of normative Whole-Brain Emulation (WBE). When I first discovered ANs, I was more dubious at that point about the computational reducibility of the mind because I thought that it relied on the premise that neurons act in a computational fashion (i.e., like normative computational paradigms) to begin with—thus a conflation of classical computation with neural operation—rather than on the conclusion, drawn from the Church-Turing thesis, that mind is computable because the universe is. It is not that the brain is a computer to begin with, but that we can model any physical process via mathematical/computational emulation and simulation. The latter would be the correct view, and I didn’t really realize that this was the case until after I had discovered the WBE roadmap in 2010. This fundamental misconception allowed me, however, to also independently arrive at the insight underlying the real premise of WBE:  that combining premise A – that we had various mathematical computational models of neuron behavior – with premise B – that we can perform mathematical models on computers – ultimately yields the conclusion C – that we can simply perform the relevant mathematical models on computational substrate, thereby effectively instantiating the mind “embodied” in those neural operations while simultaneously eliminating many logistical and technological challenges to the prosthetic approach. This seemed both likelier than the original assumption—conflating neuronal activity with normative computation, as a special case not applicable to, say, muscle cells or skin cells, which wasn’t the presumption WBE makes at all—because this approach only required the ability to mathematically model anything, rather than relying on a fundamental equivalence between two different types of physical system (neuron and classical computer). The fact that I mistakenly saw it as an approach to emulation that was categorically dissimilar to normative WBE also helped urge me on to continue conceptual development of the various sub-aims of the project after having found that the idea of brain emulation already existed, because I thought that my approach was sufficiently different to warrant my continued effort.

There are other reasons for suspecting that mind may not be computationally reducible using current computational paradigms – reasons that rely on neither vitalism (i.e., the claim that mind is at least partially immaterial and irreducible to physical processes) nor on the invalidity of the Church-Turing thesis. This line of reasoning has nothing to do with functionality and everything to do with possible physical bases for subjective-continuity, both a) immediate subjective-continuity (i.e., how can we be a unified, continuous subjectivity if all our component parts are discrete and separate in space?), which can be considered as the capacity to have subjective experience, also called sentience (as opposed to sapience, which designated the higher cognitive capacities like abstract thinking) and b) temporal subjective-continuity (i.e., how do we survive as continuous subjectivities through a process of gradual substrate replacement?). Thus this argument impacts the possibility of computationally reproducing mind only insofar as the definition of mind is not strictly functional but is made to include a subjective sense of self—or immediate subjective-continuity. Note that subjective-continuity through gradual replacement is not speculative (just the scale and rate required to sufficiently implement it are), but rather has proof of concept in the normal metabolic replacement of the neuron’s constituent molecules. Each of us is a different person materially than we were 7 years ago, and we still claim to retain subjective-continuity. Thus, gradual replacement works; it is just the scale and rate required that are under question.

This is another way in which my approach and project differs from WBE. WBE equates functional equivalence (i.e., the same output via different processes) with subjective equivalence, whereas my approach involved developing variant approaches to neuron-replication-unit design that were each based on a different hypothetical basis for instantive subjective continuity.

 Are Current Computational Paradigms Sufficient?

Biological neurons are both analog and binary. It is useful to consider a 1st tier of analog processes, manifest in the action potentials occurring all over the neuronal soma and terminals, with a 2nd tier of binary processing, in that either the APs’ sum crosses the threshold value needed for the neuron to fire, or it falls short of it and the neuron fails to fire. Thus the analog processes form the basis of the digital ones. Moreover, the neuron is in an analog state even in the absence of membrane depolarization through the generation of the resting-membrane potential (maintained via active ion-transport proteins), which is analog rather than binary for always undergoing minor fluctuations due to it being an active process (ion-pumps) that instantiates it. Thus the neuron at any given time is always in the process of a state-transition (and minor state-transitions still within the variation-range allowed by a given higher-level static state; e.g., resting membrane potential is a single state, yet still undergoes minor fluctuations because the ions and components manifesting it still undergo state-transitions without the resting-membrane potential itself undergoing a state-transition), and thus is never definitively on or off. This brings us to the first potential physical basis for both immediate and temporal subjective-continuity. Analog states are continuous, and the fact that there is never a definitive break in the processes occurring at the lower levels of the neuron represents a potential basis for our subjective sense of immediate and temporal continuity.

Paradigms of digital computation, on the other hand, are at the lowest scale either definitively on or definitively off. While any voltage within a certain range will cause the generation of an output, it is still at base binary because in the absence of input the logic elements are not producing any sort of fluctuating voltage—they are definitively off. In binary computation, the substrates undergo a break (i.e., region of discontinuity) in their processing in the absence of inputs, and are in this way fundamentally dissimilar to the low-level operational modality of biological neurons by virtue of being procedurally discrete rather than procedurally continuous.

If the premise that the analog and procedurally continuous nature of neuron-functioning (including action potentials, resting-membrane potential, and metabolic processes that form a potential basis for immediate and temporal subjective-continuity) holds true, then current digital paradigms of computation may prove insufficient at maintaining subjective-continuity if used as the substrate in a gradual-replacement procedure, while still being sufficient to functionally replicate the mind in all empirically verifiable metrics and measures. This is due to both the operational modality of binary processing (i.e., lack of analog output) and the procedural modality of binary processing (the lack of temporal continuity or lack of producing minor fluctuations in reference to a baseline state when in a resting or inoperative state). A logic element could have a fluctuating resting voltage rather than the absence of any voltage and could thus be procedurally continuous while still being operationally discrete by producing solely binary outputs.

So there are two possibilities here. One is that any physical substrate used to replicate a neuron (whether via 1st-order embodiment a.k.a prosthesis/physical-systems, or via 2nd-order embodiment a.k.a computational emulation or simulation) must not undergo a break in its operation in the absence of input, because biological neurons do not, and this may be a potential basis for instantive subjective-continuity, but rather must produce a continuous or uninterrupted signal when in a “steady-state” (i.e., in the absence of inputs). The second possibility includes all the premises of the first, but adds that such an inoperative-state signal (or “no-inputs”-state signal) undergo minor fluctuations (because then a steady stream of causal interaction is occurring – e.g., producing a steady signal could be as discontinuous as no signal, like “being on pause”.

Thus one reason for developing the physicalist-functionalist (i.e., physically embodied prosthetic) approach to NRU design was a hedging of bets, in the case that a.) current computational substrates fail to replicate a personally continuous mind for the reasons described above, or b.) we fail to discover the principles underlying a given physical process—thus being unable to predictively model it—but still succeed in integrating them with the artificial systems comprising the prosthetic approach until such a time as to be able to discover their underlying principles, or c.) in the event that we find some other, heretofore unanticipated conceptual obstacle to computational reducibility of mind.

Franco Cortese is an editor for Transhumanity.net, as well as one of its most frequent contributors.  He has also published articles and essays on Immortal Life and The Rational Argumentator. He contributed 4 essays and 7 debate responses to the digital anthology Human Destiny is to Eliminate Death: Essays, Rants and Arguments About Immortality.

Franco is an Advisor for Lifeboat Foundation (on its Futurists Board and its Life Extension Board) and contributes regularly to its blog.

Bibliography

Copeland, J. B. (2008). Neural Network. In The Stanford Encyclopedia of Philosophy (Fall 2008 Edition). Retrieved February 28, 2013. from http://plato.stanford.edu/archives/fall2008/entries/church-turing

Crick, F. (1984 Nov 8-14). Memory and molecular turnover. In Nature, 312(5990)(101). PMID: 6504122

Criterion of Falsifiability, Encyclopædia Britannica. Encyclopædia Britannica Online Academic Edition. Retrieved February 28, 2013, from http://www.britannica.com/EBchecked/topic/201091/criterion-of-falsifiability

Drexler, K. E. (1986). Engines of Creation: The Coming Era of Nanotechnology. New York: Anchor Books.

Grabianowski (2007). How Brain-computer Interfaces Work. Retrieved February 28, 2013, from http://computer.howstuffworks.com/brain-computer-interface.htm

Koene, R. (2011). The Society of Neural Prosthetics and Whole Brain Emulation Science. Retrieved February 28, 2013, from http://www.minduploading.org/

Martins, N. R., Erlhagen, W. & Freitas Jr., R. A. (2012). Non-destructive whole-brain monitoring using nanorobots: Neural electrical data rate requirements. International Journal of Machine Consciousness, 2011. Retrieved February 28, 2013, from http://www.nanomedicine.com/Papers/NanoroboticBrainMonitoring2012.pdf.

Narayan, A. (2004). Computational Methods for NEMS. Retrieved February 28, 2013, from http://nanohub.org/resources/407.

Sandberg, A. & Bostrom, N. (2008). Whole Brain Emulation: A Roadmap, Technical Report #2008-3. Retrieved February 28, 2013, from Whole Brain Emulation: A Roadmap, Technical Report #2008-3.

Star, E. N., Kwiatkowski, D. J. & Murthy, V. N. (2002). Rapid turnover of actin in dendritic spines and its regulation by activity. Nature Neuroscience, 5 , 239-246.

Tsien, J. Z., Rampon, C., Tang,Y.P. & Shimizu, E. (2000). NMDA receptor dependent synaptic reinforcement as a crucial process for memory consolidation. Science, 290 , 1170-1174.

Vladimir, Z. (2013). Neural Network. In Encyclopædia Britannica Online Academic Edition. Retrieved February 28, 2013, from http://www.britannica.com/EBchecked/topic/410549/neural-network

Wolf, W. & (March 2009). Cyber-physical Systems. In Embedded Computing. Retrieved February 28, 2013, from http://www.jiafuwan.net/download/cyber_physical_systems.pdf