Browsed by
Tag: science

California Transhumanist Party Leadership Meeting – Presentation by Newton Lee and Discussion on Transhumanist Political Efforts

California Transhumanist Party Leadership Meeting – Presentation by Newton Lee and Discussion on Transhumanist Political Efforts

Newton Lee
Gennady Stolyarov II
Bobby Ridge
Charlie Kam


The California Transhumanist Party held its inaugural Leadership Meeting on January 27, 2018. Newton Lee, Chairman of the California Transhumanist Party and Education and Media Advisor of the U.S. Transhumanist Party,  outlined the three Core Ideals of the California Transhumanist Party (modified versions of the U.S. Transhumanist Party’s Core Ideals), the forthcoming book “Transhumanism: In the Image of Humans” – which he is curating and which will contain essays from leading transhumanist thinkers in a variety of realms, and possibilities for outreach, future candidates, and collaboration with the U.S. Transhumanist Party and Transhumanist Parties in other States. U.S. Transhumanist Party Chairman Gennady Stolyarov II contributed by providing an overview of the U.S. Transhumanist Party’s current operations and possibilities for running or endorsing candidates for office in the coming years.

Visit the website of the California Transhumanist Party:http://www.californiatranshumanistparty.org/index.html

Read the U.S. Transhumanist Party Constitution: http://transhumanist-party.org/constitution/

Become a member of the U.S. Transhumanist Party for free: http://transhumanist-party.org/membership/

(If you reside in California, this would automatically render you a member of the California Transhumanist Party.)

I am the Lifespan – Video by G. Stolyarov II

I am the Lifespan – Video by G. Stolyarov II

G. Stolyarov II


Gennady Stolyarov II, Chairman of the United States Transhumanist Party, discusses why longevity research is crucial, and how our generation stands on the threshold of finally dealing a decisive blow to the age-old enemies of aging and death, which have destroyed great human minds since the emergence of our species.

This video is part of the #IAmTheLifespan campaign, coordinated by Lifespan.io and the Life Extension Advocacy Foundation (LEAF) for Longevity Month, October 2017. Read more about this campaign here.

Become a member of the U.S. Transhumanist Party for free, no matter where you reside. Fill out our Membership Application Form here.

Become a Foreign Ambassador for the U.S. Transhumanist Party. Apply here.

Visit the website of the U.S. Transhumanist Party here.

U.S. Transhumanist Party Discussion on Prosthetics, Neuroscience, and the Future of Human Potential

U.S. Transhumanist Party Discussion on Prosthetics, Neuroscience, and the Future of Human Potential

The New Renaissance Hat

G. Stolyarov II

Bobby Ridge

Scott Jurgens

September 18, 2017


References

– Hugh Herr – “The new bionics that let us run, climb, and dance” – TED – March 2014
– LimbForge – Enable Community Foundation
– Autodesk Fusion 360
– Thingiverse
– “Metal Gear Solid 5 Inspires an Amazing Prosthetic Arm” – Kendall Ashley – Nerdist – May 23, 2016

Learn more about the U.S. Transhumanist Party here.

Become a member of the U.S. Transhumanist Party for free, no matter where you reside. Fill out our Membership Application Form here.

Become a Foreign Ambassador for the U.S. Transhumanist Party. Apply here.

U.S. Transhumanist Party Interview with Bobby Ridge

U.S. Transhumanist Party Interview with Bobby Ridge

The New Renaissance Hat
Gennady Stolyarov II and Bobby Ridge
July 8, 2017
******************************

 


Gennady Stolyarov II, Chairman of the United States Transhumanist Party, interviews Bobby Ridge, a researcher into transhumanist philosophy and the scientific method and the new Secretary-Treasurer of the United States and Nevada Transhumanist Parties.

Watch this conversation regarding the subjects of Mr. Ridge’s research, the scientific method, and transhumanism more generally.

Bobby Ridge has a Bachelor’s Degree in Biomedical Science from California State University of Sacramento (CSUS) and is striving to achieve his MD in Neurology. He only recently became a Transhumanist. He conducts research for CSUS’s Psychology Department and his own personal research on the epistemology and Scientiometrics of the Scientific Method. He also co-owns Togo’s in Citrus Heights, CA. Mr. Ridge considers transhumanism to describe the future of humanity taking its next steps in evolution, which are both puissant and daunting. With the exponential increase in information technology, Mr. Ridge considers it important for us to become a science-based species to prevent a dystopian-type future from occurring.

Visit the website of the U.S. Transhumanist Party at http://transhumanist-party.org/.

Become a member of the U.S. Transhumanist Party for free by filling out this form.

The Transhumanist Party: New Politics for Life Extension and Technological Progress – Video by G. Stolyarov II

The Transhumanist Party: New Politics for Life Extension and Technological Progress – Video by G. Stolyarov II

The New Renaissance HatG. Stolyarov II
******************************

Gennady Stolyarov II, Chairman of the U.S. Transhumanist Party, discusses the progress made in late 2016 and early 2017 and the goals of transhumanist politics – how the advocacy of emerging technologies and life extension in a political context sets the Transhumanist Party’s approach apart from mainstream politics.

This presentation was delivered virtually on January 27, 2017, to a meeting of People Unlimited in Scottsdale, Arizona, as part of People Unlimited’s Ageless Education speaker series. After the conclusion of his remarks, Mr. Stolyarov answered several questions from the audience.

Find out more about the Transhumanist Party at http://transhumanist-party.org/.

Become a member for free by filling out the Membership Application Form.

Read Version 2.0 of the Transhumanist Bill of Rights here.

View the Platform of the Transhumanist Party here.

Crowdfunding Longevity Science: An Interview with Keith Comito of Lifespan.io – Article by Reason

Crowdfunding Longevity Science: An Interview with Keith Comito of Lifespan.io – Article by Reason

The New Renaissance HatReason
******************************

Keith Comito leads the volunteers of the non-profit Life Extension Advocacy Foundation (LEAF) and the crowdfunding initiative Lifespan.io, a site I’m sure you’ve seen at least in passing by now. The LEAF crew have put in a lot of effort to help make fundraisers for rejuvenation research projects a success both last year and this year. Two such crowdfunding campaigns are running right now, firstly senolytic drug research at the Major Mouse Testing Program with just a few days left to go, and in its stretch goals, and secondly the recently launched drug discovery for ALT cancers at the SENS Research Foundation. Both tie in to the SENS portfolio of research programs aimed at effective treatment of aging and all age-related conditions. These are large projects when taken as a whole, but the way forward in this as in all things is to pick out smaller, achievable goals, and set out to get them done. Then repeat as necessary.

I recently had the chance to ask Keith Comito a few questions about Lifespan.io, the state of funding for the interesting end of longevity science, and what he envisages for the years ahead. This is an interesting, revolutionary time for the life sciences, in which progress in biotechnology has made early stage research very cheap. A great deal can be accomplished at the cutting edge of medical science given access to an established lab, administrators who can break out small initiatives from the larger goals, smart young researchers, and a few tens of thousands of dollars. It is an age in which we can all help to advance the research we care about, by collaborating and donating, and it has never been easier to just reach out and talk to the scientists involved. If you haven’t taken a look at Lifespan.io and donated to one of the projects there, then you really should. This is a way to move the needle on aging research, and advance that much closer to effective treatments for the causes of aging.

Quote:

What is the Lifespan.io story in brief? What was the spur that made you come together and decide to do your part in the fight against aging?

Lifespan.io began to take shape at the tail end of 2012, as a result of a loose discussion group based in New York which consisted of citizen scientists such as myself and Dr. Oliver Medvedik, supporters of SENS, as well as a few healthcare practitioners. We began having monthly meetings to discuss what could be done to accelerate longevity research (usually in oddball locations like salad bars or subterranean Japanese restaurants befitting our motley crew) and eventually hit upon the idea of crowdfunding. What drew us to this idea was that it was something tangible: a concrete way to move the needle on important research not only through funds, but through raised awareness. It is fine to talk and rabble-rouse about longevity, but we felt such efforts would be much more effective if they were paired with a clear and consistent call to action – a path to walk the walk, so to speak. As this idea coalesced we formed the nonprofit LEAF to support this initiative, and the rest is history. Not every one from the initial discussions in 2012 remained throughout the intervening years, but we are thankful to all who gave us ideas in those early days of the movement.

I’d like to hear your take on why we have to advocate and raise funds at all – why the whole world isn’t rising up in support of treatments for the causes of aging.

The reasons why people and society at large have not prioritized anti-aging research thus far are myriad: fear of radical change, a history of failed attempts making it seem like a fools errand, long timescales making it a difficult issue for election-focused politicians to support, etc. The reason I find most personally interesting relates to cognitive bias – specifically the fact that our built-in mental hardware is ill-equipped to handle questions like “do you want to live 100 more years?” If instead you ask the questions “Do you want to be alive tomorrow?” and “Given that your health and that of your loved ones remains the same, do you suspect your answer to the first question will change tomorrow?”, the answers tend to be more positive.

This leads me to conclude that the state of affairs is not necessarily as depressing for our cause as it might appear, and that reframing the issue of healthy life extension in a way that will inspire and unite the broader populace is possible. Aubrey de Grey has spoken about “Longevity Escape Velocity” in relation to the bootstrapping of biomedical research, but I think the same idea applies to the public perception of life extension as well. The sooner we can galvanize the public to support therapies that yield positive results the easier it will become to invite others to join in this great work. It is all about jump starting the positive feedback loop, and that is why we believe rallying the crowd behind critical research and trumpeting these successes publicly is so vitally important.

What the future plans for Lifespan.io and the Life Extension Advocacy Foundation?

In addition to scaling up our ability to run successful campaigns on Lifespan.io, we look forward to improving our infrastructure at LEAF by bringing on some staff members to join the team. LEAF has largely been a volunteer effort thus far, and having the support of a staff will allow us to take on more campaigns as well as further improve the workflow to create and promote them. This will also free me up personally to more actively pursue potential grand slams for the movement, such as collaborations with prominent YouTube science channels to engage the public and policy related goals like the inclusion of a more useful classification of aging in the ICD-11.

Do you have any favored areas in research at the moment? Is there any particular field for which you’d like to see researchers approaching you for collaboration?

Senolytics is certainly an exciting area of research right now (congratulations Major Mouse Testing Program!), and a combination of successful senolytics with stem cell therapies could be a potential game changer. That being said I’d also like to see projects which address the truly core mechanics of aging, such as how damage is aggregated during stem cell division, and the potential differences in this process between somatic and germ cells. How can the germ line renew itself for essentially infinity? The real mystery here is not that we grow old, but how we are born young.

A related question: where do you see aging and longevity research going over the next few years?

In the near future we will likely continue to see the pursuit of compounds which restore bodily systems failing with age to a more youthful state. This will include validating in higher organisms molecules that have shown this sort of promise: rapamycin, metformin, IL-33 for Alzheimer’s, etc. This approach may sound incremental, but it actually signals a great paradigm shift from the old system of mostly ineffective “preventative measures” such as antioxidants. Things like nicotinamide mononucleotide (NMN), IL-33 – if successful these types of therapies can be applied when you are old, and help restore your bodily systems to youthful levels. That would be a pretty big deal.

Funding is ever the battle in the sciences, and especially for aging. Obviously you have strong opinions on this topic. How can we change this situation for the better?

I believe the key to greater funding, both from public and private sources, is to build up an authentic and powerful grassroots movement in support of healthy life extension. Not only can such a movement raise funds directly, but it also communicates to businesses and governments that this is an issue worth supporting. An instructive example to look at here is the work of Mary Lasker and Sydney Farber to bring about the “War on Cancer”. Through galvanizing the public with efforts such as the “Jimmy Fund”, they effected social and political change on the issue, and helped turn cancer from a pariah disease into a national priority. If we all work together to build an inclusive and action-orientated movement, we can do the same.

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries.
***
This work is reproduced here in accord with a Creative Commons Attribution license. It was originally published on FightAging.org.

 

Which Culture Can Make 120 Years Old the Prime of Life? – Article by Edward Hudgins

Which Culture Can Make 120 Years Old the Prime of Life? – Article by Edward Hudgins

The New Renaissance HatEdward Hudgins
******************************
Emma Morano, age 116, is the last person alive born in the nineteenth century. New cutting-edge technologies could mean that more than a few people born at the end of the twentieth century will be in the prime of life when they reach that age. But this future will require a culture of reason that is currently dying out in our world.
emma_morano
Is the secret to a long life raw eggs or genetics?
Signorina Morano was born in Italy on Nov 29, 1899. On the recent passing of Susannah Mushatt Jones, who was born a few months before her, Morano inherited the title of world’s oldest person. She still has a ways to go to best the longevity record of the confirmed oldest person who ever lived, Jeanne Calment (1875-1997) who made it to 122.Every oldster offers their secret to long life. Morano attributes her feat to remaining single, adding that she likes to eat raw eggs. But the reason living things die, no matter what their diet, is genetic. Cellular senescence, the fancy word for aging, means the cells of almost every organism are programmed to break down at some point. Almost, because at least one organism, the hydra, a tiny fresh-water animal, seems not to age.

Defying death
Researches are trying to discover what makes the hydra tick so that they find ways to reprogram human cells so we will stop aging. As fantastic as this sounds, it is just one part of a techno-revolution that could allow us to live decades or even centuries longer while retaining our health and mental faculties. Indeed, the week the Morano story ran, both the Washington Post and New York Times featured stories about scientists who approach aging not as an unavoidable part of our nature but as a disease that can be cured.

Since 2001, the cost of sequencing a human genome has dropped from $100 million to just over $1,000. This is spurring an explosion in bio-hacking to figure out how to eliminate ailments like Parkinson’s and Alzheimer’s. We also see nanotechnology dealing with failing kidneys. New high-tech devices deal with blindness and other such disabilities.

An achievement culture and longevity
But this bright future could be fading. Here’s why.

The source of all human achievement is the human mind, our power to understand our world and thus to control it for our own benefit; Ayn Rand called machines “the frozen form of a living intelligence.”

But America, the country that put humans on the Moon, is becoming the stupid country. Despite increased government education spending, test results in science and most other subjects have remained flat for decades. On international ratings, American students are behind students in most other developed countries. It’s a good thing America still has a relatively open immigration policy! Many of the tech people here come from overseas, especially India, because America still offers enough opportunity to make up for its failing schools.

Apollo_11_nasa-69-hc-916am

The deeper problem is found in the prevailing values in our culture. In the 1950s and ‘60s many young people, inspired by the quest for the Moon, aspired to be scientists and engineers, to train their minds. Many went into the research labs of private firms that became the production leaders of the world. It was a culture that celebrated achievement.

Today, many young people, perverted by leftist dogma, hunger to be political enforcers, to train themselves in power and manipulation. Many go into campaigns and government to wrest wealth from producers to pay for “entitlements,” and to make the country more “equal” by tearing producers down. A growing portion of the culture demonizes achievement and envious of success.

Were they to live for 120 healthy years, individuals with the older, pro-achievement values would find their souls even more enriched by their extended careers of achievement. But individuals in the newer, anti-achievement culture would find their souls embittered as they focused enviously on degrading their productive fellows.

All who want long lives worth living need to not only promote science but also the values of reason and achievement. That’s the way to create a pro-longevity culture.

Explore

Edward Hudgins, “Google, Entrepreneurs, and Living 500 Years.” March 12, 2015.

Edward Hudgins, “How Anti-Individualist Fallacies Prevent Us from Curing Death.” April 22, 2015.

Bradley Doucet, “Book Review: The Green-Eyed Monster.” March 2008.

David Kelley, “Hatred of the Good.” April 2008.

Dr. Edward Hudgins directs advocacy and is a senior scholar for The Atlas Society, the center for Objectivism in Washington, D.C.

Copyright The Atlas Society. For more information, please visit www.atlassociety.org.

How Networks Topple Scientific Dogmas – Article by Max Borders

How Networks Topple Scientific Dogmas – Article by Max Borders

The New Renaissance HatMax Borders
******************************

The Peer-to-Peer Republic of Science

Science is undergoing a wrenching evolutionary change.

In fact, most of what we consider to be carried out in the name of science is dubious at best, flat wrong at worst. It appears we’re putting too much faith in science — particularly the kind of science that relies on reproducibility.

In a University of Virginia meta-study, half of 100 psychology study results could not be reproduced.

Experts making social science prognostications turned out to be mostly wrong, according to political science writer Philip Tetlock’s decades-long review of expert forecasts.

But there is perhaps no more egregious example of bad expert advice than in the area of health and nutrition. As I wrote last year for Voice & Exit:

For most of our lives, we’ve been taught some variation on the food pyramid. The advice? Eat mostly breads and cereals, then fruits and vegetables, and very little fat and protein. Do so and you’ll be thinner and healthier. Animal fat and butter were considered unhealthy. Certain carbohydrate-rich foods were good for you as long as they were whole grain. Most of us anchored our understanding about food to that idea.

“Measures used to lower the plasma lipids in patients with hyperlipidemia will lead to reductions in new events of coronary heart disease,” said the National Institutes of Health (NIH) in 1971. (“How Networks Bring Down Experts (The Paleo Example),” March 12, 2015)

The so-called “lipid theory” had the support of the US surgeon general. Doctors everywhere fell in line behind the advice. Saturated fats like butter and bacon became public enemy number one. People flocked to the supermarket to buy up “heart healthy” margarines. And yet, Americans were getting fatter.

But early in the 21st century something interesting happened: people began to go against the grain (no pun) and they started talking about their small experiments eating saturated fat. By 2010, the lipid hypothesis — not to mention the USDA food pyramid — was dead. Forty years of nutrition orthodoxy had been upended. Now the experts are joining the chorus from the rear.

The Problem Goes Deeper

But the problem doesn’t just affect the soft sciences, according to science writer Ron Bailey:

The Stanford statistician John Ioannidis sounded the alarm about our science crisis 10 years ago. “Most published research findings are false,” Ioannidis boldly declared in a seminal 2005 PLOS Medicine article. What’s worse, he found that in most fields of research, including biomedicine, genetics, and epidemiology, the research community has been terrible at weeding out the shoddy work largely due to perfunctory peer review and a paucity of attempts at experimental replication.

Richard Horton of the Lancet writes, “The case against science is straightforward: much of the scientific literature, perhaps half, may simply be untrue.” And according Julia Belluz and Steven Hoffman, writing in Vox,

Another review found that researchers at Amgen were unable to reproduce 89 percent of landmark cancer research findings for potential drug targets. (The problem even inspired a satirical publication called the Journal of Irreproducible Results.)

Contrast the progress of science in these areas with that of applied sciences such as computer science and engineering, where more market feedback mechanisms are in place. It’s the difference between Moore’s Law and Murphy’s Law.

So what’s happening?

Science’s Evolution

Three major catalysts are responsible for the current upheaval in the sciences. First, a few intrepid experts have started looking around to see whether studies in their respective fields are holding up. Second, competition among scientists to grab headlines is becoming more intense. Third, informal networks of checkers — “amateurs” — have started questioning expert opinion and talking to each other. And the real action is in this third catalyst, creating as it does a kind of evolutionary fitness landscape for scientific claims.

In other words, for the first time, the cost of checking science is going down as the price of being wrong is going up.

Now, let’s be clear. Experts don’t like having their expertise checked and rechecked, because their dogmas get called into question. When dogmas are challenged, fame, funding, and cushy jobs are at stake. Most will fight tooth and nail to stay on the gravy train, which can translate into coming under the sway of certain biases. It could mean they’re more likely to cherry-pick their data, exaggerate their results, or ignore counterexamples. Far more rarely, it can mean they’re motivated to engage in outright fraud.

Method and Madness

Not all of the fault for scientific error lies with scientists, per se. Some of it lies with methodologies and assumptions most of us have taken for granted for years. Social and research scientists have far too much faith in data aggregation, a process that can drop the important circumstances of time and place. Many researchers make inappropriate inferences and predictions based on a narrow band of observed data points that are plucked from wider phenomena in a complex system. And, of course, scientists are notoriously good at getting statistics to paint a picture that looks like their pet theories.

Some sciences even have their own holy scriptures, like psychology’s Diagnostic and Statistical Manual. These guidelines, when married with government funding, lobbyist influence, or insurance payouts, can protect incomes but corrupt practice.

But perhaps the most significant methodological problem with science is overreliance on the peer-review process. Peer review can perpetuate groupthink, the cartelization of knowledge, and the compounding of biases.

The Problem with Expert Opinion

The problem with expert opinion is that it is often cloistered and restrictive. When science starts to seem like a walled system built around a small group of elites (many of whom are only sharing ideas with each other) — hubris can take hold. No amount of training or smarts can keep up with an expansive network of people who have a bigger stake in finding the truth than in shoring up the walls of a guild or cartel.

It’s true that to some degree, we have to rely on experts and scientists. It’s a perfectly natural part of specialization and division of labor that some people will know more about some things than you, and that you are likely to need their help at some point. (I try to stay away from accounting, and I am probably not very good at brain surgery, either.) But that doesn’t mean that we shouldn’t question authority, even when the authority knows more about their field than we do.

The Power of Networks

But when you get an army of networked people — sometimes amateurs — thinking, talking, tinkering, and toying with ideas — you can hasten a proverbial paradigm shift. And this is exactly what we are seeing.

It’s becoming harder for experts to count on the vagaries and denseness of their disciplines to keep their power. But it’s in cross-disciplinary pollination of the network that so many different good ideas can sprout and be tested.

The best thing that can happen to science is that it opens itself up to everyone, even people who are not credentialed experts. Then, let the checkers start to talk to each other. Leaders, influencers, and force-multipliers will emerge. You might think of them as communications hubs or bigger nodes in a network. Some will be cranks and hacks. But the best will emerge, and the cranks will be worked out of the system in time.

The network might include a million amateurs willing to give a pair of eyes or a different perspective. Most in this army of experimenters get results and share their experiences with others in the network. What follows is a wisdom-of-crowds phenomenon. Millions of people not only share results, but challenge the orthodoxy.

How Networks Contribute to the Republic of Science

In his legendary 1962 essay, “The Republic of Science,” scientist and philosopher Michael Polanyi wrote the following passage. It beautifully illustrates the problems of science and of society, and it explains how they will be solved in the peer-to-peer age:

Imagine that we are given the pieces of a very large jigsaw puzzle, and suppose that for some reason it is important that our giant puzzle be put together in the shortest possible time. We would naturally try to speed this up by engaging a number of helpers; the question is in what manner these could be best employed.

Polanyi says you could progress through multiple parallel-but-individual processes. But the way to cooperate more effectively

is to let them work on putting the puzzle together in sight of the others so that every time a piece of it is fitted in by one helper, all the others will immediately watch out for the next step that becomes possible in consequence. Under this system, each helper will act on his own initiative, by responding to the latest achievements of the others, and the completion of their joint task will be greatly accelerated. We have here in a nutshell the way in which a series of independent initiatives are organized to a joint achievement by mutually adjusting themselves at every successive stage to the situation created by all the others who are acting likewise.

Just imagine if Polanyi had lived to see the Internet.

This is the Republic of Science. This is how smart people with different interests and skill sets can help put together life’s great puzzles.

In the Republic of Science, there is certainly room for experts. But they are hubs among nodes. And in this network, leadership is earned not by sitting atop an institutional hierarchy with the plumage of a postdoc, but by contributing, experimenting, communicating, and learning with the rest of a larger hive mind. This is science in the peer-to-peer age.

Max Borders is Director of Idea Accounts and Creative Development for Emergent Order. He was previously the editor of the Freeman and director of content for FEE. He is also cofounder of the event experience Voice & Exit.

This article was published by The Foundation for Economic Education and may be freely distributed, subject to a Creative Commons Attribution 4.0 International License, which requires that credit be given to the author.

On Soda Taxes and Purported Health Benefits – Article by Peter Van Doren

On Soda Taxes and Purported Health Benefits – Article by Peter Van Doren

The New Renaissance HatPeter Van Doren
October 27, 2015
******************************

This week, the New York Times editorial board wrote in support of greater taxes on sweetened drinks, citing new research from a team Mexican and American researchers. They praise the novel design of the tax, which is levied on drink distributors rather than consumers. This caused the tax to be included in shelf prices, making the increase in total cost clear to consumers. The research found that soda consumption fell 12 percent in a year, and 17 percent among the poorest Mexicans.

The Times admits that we do not know whether any health benefits will actually result from soda taxes.  In this article in Regulation, the University of Pennsylvania’s Jonathan Klick and Claremont McKenna’s Eric Helland examined the effects of soda taxes. They conclude that a one percent increase in soda taxes led to a five percent reduction in soda consumption among young people.  But consumers substituted to other beverages.  A 6-calorie reduction in soda consumption was accompanied by an 8-calorie increase in milk consumption and a 2-calorie increase in juice consumption. Thus, the tax on soda led to an increase in overall calorie consumption, which offset the benefits of falling soda consumption. Moreover, there was “no statistically significant effect of soda taxes on body weight or the likelihood of being obese or overweight”.

Peter Van Doren is editor of the quarterly journal Regulation and an expert in the regulation of housing, land, energy, the environment, transportation, and labor. He has taught at the Woodrow Wilson School of Public and International Affairs (Princeton University), the School of Organization and Management (Yale University), and the University of North Carolina at Chapel Hill. From 1987 to 1988 he was the postdoctoral fellow in political economy at Carnegie Mellon University. His writing has been published in the Wall Street Journal, the Washington Post, Journal of Commerce, and the New York Post. Van Doren has also appeared on CNN, CNBC, Fox News Channel, and Voice of America.

He received his bachelor’s degree from the Massachusetts Institute of Technology and his master’s degree and doctorate from Yale University.

This work by Cato Institute is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Is the FDA Too Conservative or Too Aggressive? – Article by Alex Tabarrok

Is the FDA Too Conservative or Too Aggressive? – Article by Alex Tabarrok

The New Renaissance HatAlex Tabarrok
September 21, 2015
******************************

I have long argued that the FDA has an incentive to delay the introduction of new drugs because approving a bad drug (Type I error) has more severe consequences for the FDA than does failing to approve a good drug (Type II error). In the former case at least some victims are identifiable and the New York Times writes stories about them and how they died because the FDA failed. In the latter case, when the FDA fails to approve a good drug, people die but the bodies are buried in an invisible graveyard.

In an excellent new paper (SSRN also here) Vahid Montazerhodjat and Andrew Lo use a Bayesian analysis to model the optimal tradeoff in clinical trials between sample size, Type I and Type II error. Failing to approve a good drug is more costly, for example, the more severe the disease. Thus, for a very serious disease, we might be willing to accept a greater Type I error in return for a lower Type II error. The number of people with the disease also matters. Holding severity constant, for example, the more people with the disease the more you want to increase sample size to reduce Type I error. All of these variables interact.

In an innovation the authors use the U.S. Burden of Disease Study to find the number of deaths and the disability severity caused by each major disease. Using this data they estimate the costs of failing to approve a good drug. Similarly, using data on the costs of adverse medical treatment they estimate the cost of approving a bad drug.

Putting all this together the authors find that the FDA is often dramatically too conservative:

…we show that the current standards of drug-approval are weighted more on avoiding a Type I error (approving ineffective therapies) rather than a Type II error (rejecting effective therapies). For example, the standard Type I error of 2.5% is too conservative for clinical trials of therapies for pancreatic cancer—a disease with a 5-year survival rate of 1% for stage IV patients (American Cancer Society estimate, last updated 3 February 2013). The BDA-optimal size for these clinical trials is 27.9%, reflecting the fact that, for these desperate patients, the cost of trying an ineffective drug is considerably less than the cost of not trying an effective one.

(The authors also find that the FDA is occasionally a little too aggressive but these errors are much smaller, for example, the authors find that for prostate cancer therapies the optimal significance level is 1.2% compared to a standard rule of 2.5%.)

The result is important especially because in a number of respects, Montazerhodjat and Lo underestimate the costs of FDA conservatism. Most importantly, the authors are optimizing at the clinical trial stage assuming that the supply of drugs available to be tested is fixed. Larger trials, however, are more expensive and the greater the expense of FDA trials the fewer new drugs will be developed. Thus, a conservative FDA reduces the flow of new drugs to be tested. In a sense, failing to approve a good drug has two costs, the opportunity cost of lives that could have been saved and the cost of reducing the incentive to invest in R&D. In contrast, approving a bad drug while still an error at least has the advantage of helping to incentivize R&D (similarly, a subsidy to R&D incentivizes R&D in a sense mostly by covering the costs of failed ventures).

The Montazerhodjat and Lo framework is also static, there is one test and then the story ends. In reality, drug approval has an interesting asymmetric dynamic. When a drug is approved for sale, testing doesn’t stop but moves into another stage, a combination of observational testing and sometimes more RCTs–this, after all, is how adverse events are discovered. Thus, Type I errors are corrected. On the other hand, for a drug that isn’t approved the story does end. With rare exceptions, Type II errors are never corrected. The Montazerhodjat and Lo framework could be interpreted as the reduced form of this dynamic process but it’s better to think about the dynamism explicitly because it suggests that approval can come in a range–for example, approval with a black label warning, approval with evidence grading and so forth. As these procedures tend to reduce the costs of Type I error they tend to increase the costs of FDA conservatism.

Montazerhodjat and Lo also don’t examine the implications of heterogeneity of preferences or of disease morbidity and mortality. Some people, for example, are severely disabled by diseases that on average aren’t very severe–the optimal tradeoff for these patients will be different than for the average patient. One size doesn’t fit all. In the standard framework it’s tough luck for these patients. But if the non-FDA reviewing apparatus (patients/physicians/hospitals/HMOs/USP/Consumer Reports and so forth) works relatively well, and this is debatable but my work on off-label prescribing suggests that it does, this weighs heavily in favor of relatively large samples but low thresholds for approval. What the FDA is really providing is information and we don’t need product bans to convey information. Thus, heterogeneity plus a reasonable effective post-testing choice process, mediates in favor of a Consumer Reports model for the FDA.

The bottom line, however, is that even without taking into account these further points, Montazerhodjat and Lo find that the FDA is far too conservative especially for severe diseases. FDA regulations may appear to be creating safe and effective drugs but they are also creating a deadly caution.

Hat tip: David Balan.

This post first appeared at Marginal Revolution.

Alex Tabarrok is a professor of economics at George Mason University. He blogs at Marginal Revolution with Tyler Cowen.