New Egyptian War: Americans Lose, Again – Article by Ron Paul

New Egyptian War: Americans Lose, Again – Article by Ron Paul

The New Renaissance Hat
Ron Paul
July 14, 2013
******************************

Looking at the banners in the massive Egyptian protests last week, we saw many anti-American slogans. Likewise, the Muslim Brotherhood-led government that was deposed by the military last week was very critical of what it saw as US support for the coup. Why is it that all sides in this Egyptian civil war seem so angry with the United States? Because the United States has at one point or another supported each side, which means also that at some point the US has also opposed each side. It is the constant meddling in Egyptian affairs that has turned Egyptians against us, as we would resent foreign intervention in our own affairs.

For more than 30 years, since the US-brokered Camp David Accord between Israel and Egypt, the US supported Egyptian dictator Hosni Mubarak. Over that period the US sent more than $60 billion to prop up Mubarak and, importantly, to train and seek control over the Egyptian military. Those who opposed Mubarak’s unelected reign became more and more resentful of the US, which they rightly saw as aiding and abetting a dictator and denying them their political aspirations.

Then the US began providing assistance to groups seeking to overthrow Mubarak, which they did in 2011. The US continued funding the Egyptian military at that time, arguing that US aid was more critical than ever if we are to maintain influence. The US Administration demanded an election in Egypt after Mubarak’s overthrow and an election was held. Mohamed Morsi of the Muslim Brotherhood won a narrow victory. The US supported Morsi but kept funding the Egyptian military.

After a year of Morsi’s rule, Egyptians who did not approve of his government took to the streets to demand his removal from power. The US signaled to the Egyptian military that it would not oppose the removal of Morsi from power, and he was removed on July 3rd. With the overthrow of the Muslim Brotherhood-led government came the arrest of many politicians and the closure of many media outlets sympathetic to them. Then the US government warned the same Egyptian military that undermined democracy that it needed to restore democracy! Is it any wonder why Egyptians from all walks of life are united in their irritation with the United States?

Despite the Egyptian government being overthrown by a military coup, the Obama Administration will not utter the word “coup” because acknowledging reality would mean an end to US assistance to the Egyptian government and military. That cannot be allowed.

Instead, we see the same Obama administration that is on a worldwide manhunt for pro-transparency whistle-blower Edward Snowden demand that the Egyptian military exercise “political transparency” in its dealings with the ousted Muslim Brotherhood-led government.

So, successive US administrations over the decades have supported all sides in Egypt, from dictator to demonstrator to military. There is only one side that the US government has never supported: our side. The American side. It has never supported the side of the US taxpayers who resent being forced to fund a foreign dictatorship, a foreign military, and foreign protestors. It has never supported the side of the majority of Americans who do not wish to get involved in the confusing internal affairs of countries thousands of miles away. It has never supported the side of those of us concerned about blowback, which is the real threat to our national security. Unfortunately, US administrations continue to follow the same old failed policies, and Obama is no different: more intervention, more foreign aid, more bullying, more empire.

Ron Paul, MD, is a former three-time Republican candidate for U. S. President and Congressman from Texas.

This article is reprinted with permission.

Transhumanism and Mind Uploading Are Not the Same – Article by G. Stolyarov II

Transhumanism and Mind Uploading Are Not the Same – Article by G. Stolyarov II

The New Renaissance Hat
G. Stolyarov II
July 10, 2013
******************************

In what is perhaps the most absurd attack on transhumanism to date, Mike Adams of NaturalNews.com equates this broad philosophy and movement with “the entire idea that you can ‘upload your mind to a computer’” and further posits that the only kind of possible mind uploading is the destructive kind, where the original, biological organism ceases to exist. Adams goes so far as calling transhumanism a “death cult much like the infamous Heaven’s Gate cult led by Marshal Applewhite.”

I will not devote this essay to refuting any of Adams’s arguments against destructive mind uploading, because no serious transhumanist thinker of whom I am aware endorses the kind of procedure Adams uses as a straw man. For anyone who wishes to continue existing as an individual, uploading the contents of the mind to a computer and then killing the body is perhaps the most bizarrely counterproductive possible activity, short of old-fashioned suicide. Instead, Adams’s article – all the misrepresentations aside – offers the opportunity to make important distinctions of value to transhumanists.

First, having a positive view of mind uploading is neither necessary nor sufficient for being a transhumanist. Mind uploading has been posited as one of several routes toward indefinite human life extension. Other routes include the periodic repair of the existing biological organism (as outlined in Aubrey de Grey’s SENS project or as entailed in the concept of nanomedicine) and the augmentation of the biological organism with non-biological components (Ray Kurzweil’s actual view, as opposed to the absurd positions Adams attributes to him). Transhumanism, as a philosophy and a movement, embraces the lifting of the present limitations upon the human condition – limitations that arise out of the failures of human biology and unaltered physical nature. Max More, in “Transhumanism: Towards a Futurist Philosophy”, writes that “Transhumanism differs from humanism in recognizing and anticipating the radical alterations in the nature and possibilities of our lives resulting from various sciences and technologies such as neuroscience and neuropharmacology, life extension, nanotechnology, artificial ultraintelligence, and space habitation, combined with a rational philosophy and value system.” That Adams would take this immensity of interrelated concepts, techniques, and aspirations and equate it to destructive mind uploading is, plainly put, mind-boggling. There is ample room in transhumanism for a variety of approaches toward lifting the limitations of the human condition. Some of these approaches will be more successful than others, and no one approach is obligatory for those wishing to consider themselves transhumanists.

Moreover, Adams greatly misconstrues the positions of those transhumanists who do support mind uploading. For most such transhumanists, a digital existence is not seen as superior to their current biological existences, but as rather a necessary recourse if or when it becomes impossible to continue maintaining a biological existence. Dmitry Itskov’s 2045 Initiative is perhaps the most prominent example of the pursuit of mind uploading today. The aim of the initiative is to achieve cybernetic immortality in a stepwise fashion, through the creation of a sequence of avatars that gives the biological human an increasing amount of control over non-biological components. Avatar B, planned for circa 2020-2025, would involve a human brain controlling an artificial body. If successful, this avatar would prolong the existence of the biological brain when other components of the biological body have become too irreversibly damaged to support it. Avatar C, planned for circa 2030-2035, would involve the transfer of a human mind from a biological to a cybernetic brain, after the biological brain is no longer able to support life processes. There is no destruction intended in the 2045 Avatar Project Milestones, only preservation of some manner of intelligent functioning of a person whom the status quo would instead relegate to becoming food for worms. The choice between decomposition and any kind of avatar is a no-brainer (well, a brainer actually, for those who choose the latter).

Is Itskov’s path toward immortality the best one? I personally prefer SENS, combined with nanomedicine and piecewise artificial augmentations of the sort that are already beginning to occur (witness the amazing bebionic3 prosthetic hand). Itskov’s approach appears to assume that the technology for transferring the human mind to an entirely non-biological body will become available sooner than the technology for incrementally maintaining and fortifying the biological body to enable its indefinite continuation. My estimation is the reverse. Before scientists will be able to reverse-engineer not just the outward functions of a human brain but also its immensely complex and intricate internal structure, we will have within our grasp the ability to conquer an ever greater number of perils that befall the biological body and to repair the body using both biological and non-biological components.

The biggest hurdle for mind uploading to overcome is one that does not arise with the approach of maintaining the existing body and incrementally replacing defective components. This hurdle is the preservation of the individual’s unique and irreplaceable vantage point upon the world – his or her direct sense of being that person and no other. I term this direct vantage point an individual’s “I-ness”.  Franco Cortese, in his immensely rigorous and detailed conceptual writings on the subject, calls it “subjective-continuity” and devotes his attention to techniques that could achieve gradual replacement of biological neurons with artificial neurons in such a way that there is never a temporal or operational disconnect between the biological mind and its later cybernetic instantiation. Could the project of mind uploading pursue directions that would achieve the preservation of the “I-ness” of the biological person? I think this may be possible, but only if the resulting cybernetic mind is structurally analogous to the biological mind and, furthermore, maintains the temporal continuity of processes exhibited by an analog system, as opposed to a digital system’s discrete “on-off” states and the inability to perform multiple exactly simultaneous operations. Furthermore, only by developing the gradual-replacement approaches explored by Cortese could this prospect of continuing the same subjective experience (as opposed to simply creating a copy of the individual) be realized. But Adams, in his screed against mind uploading, seems to ignore all of these distinctions and explorations. Indeed, he appears to be oblivious of the fact that, yes, transhumanists have thought quite a bit about the philosophical questions involved in mind uploading. He seems to think that in mind uploading, you simply “copy the brain and paste it somewhere else” and hope that “somehow magically that other thing becomes ‘you.’” Again, no serious proponent of mind uploading – and, more generally, no serious thinker who has considered the subject – would hold this misconception.

Adams is wrong on a still further level, though. Not only is he wrong to equate transhumanism with mind uploading; not only is he wrong to declare all mind uploading to be destructive – he is also wrong to condemn the type of procedure that would simply make a non-destructive copy of an individual. This type of “backup” creation has indeed been advocated by transhumanists such as Ray Kurzweil. While a pure copy of one’s mind or its contents would not transfer one’s “I-ness” to a digital substrate and would not enable one to continue experiencing existence after a fatal illness or accident, it could definitely help an individual regain his memories in the event of brain damage or amnesia. Furthermore, if the biological individual were to irreversibly perish, such a copy would at least preserve vital information about the biological individual for the benefit of others. Furthermore, it could enable the biological individual’s influence upon the world to be more powerfully actualized by a copy that considers itself to have the biological individual’s memories, background, knowledge, and personality.  If we had with us today copies of the minds of Archimedes, Benjamin Franklin, and Nikola Tesla, we would certainly all benefit greatly from continued outpourings of technological and philosophical innovation.  The original geniuses would not know or care about this, since they would still be dead, but we, in our interactions with minds very much like theirs, would be immensely better off than we are with only their writings and past inventions at our disposal.

Yes, destructive digital copying of a mind would be a bafflingly absurd and morally troubling undertaking – but recognition of this is neither a criticism of transhumanism nor of any genuinely promising projects of mind uploading. Instead, it is simply a matter of common sense, a quality which Mike Adams would do well to acquire.

Restore the Fourth – Protest Against NSA Surveillance – Carson City Interviews – Video by G. Stolyarov II

Restore the Fourth – Protest Against NSA Surveillance – Carson City Interviews – Video by G. Stolyarov II

Mr. Stolyarov interviews attendees at the Restore the Fourth rally against NSA surveillance in Carson City, NV, on July 4, 2013. This successful protest is the beginning of what will hopefully become a major movement to regain essential individual freedoms and to roll back infringements upon Americans’ (and most human beings’) essential private spheres.

Thanks go to Larry Rubald for filming and for organizing the event.

NOTE: Apologies for the traffic noise obstructing some of the words. Full captions are now available. Thank you for your patience.

References
Restore the Fourth: Upholding the Meaning of the 4th Amendment – Video by G. Stolyarov II
Video: Several protest government snooping on Fourth of July in Carson City – Reno Gazette-Journal – July 4, 2013

Restore the Fourth: Upholding the Meaning of the 4th Amendment – Video by G. Stolyarov II

Restore the Fourth: Upholding the Meaning of the 4th Amendment – Video by G. Stolyarov II

Mr. Stolyarov discusses his experiences at the July 4, 2013, Restore the Fourth protest in Carson City, in opposition to the unconstitutional surveillance by the National Security Agency. He also expresses the need for more Americans to speak out and unambiguously state their disapproval of the Orwellian surveillance society that the NSA has put in place.

The protest went as smoothly as possible. It was civil and peaceful, and received general public support.

More videos from the protest are to come!

Reference
– “Video: Several protest government snooping on Fourth of July in Carson City” – Reno Gazette-Journal – July 4, 2013

Implied Consent: A Play on the Sanctity of Human Life by G. Stolyarov II – Second Edition

Implied Consent: A Play on the Sanctity of Human Life by G. Stolyarov II – Second Edition

Implied Consent - A Play on the Sanctity of Human Life - Second Edition - by G. Stolyarov II

Implied Consent – A Play on the Sanctity of Human Life – Second Edition – by G. Stolyarov II

 

The 95-year-old self-made multi-billionaire Quintus Grummond collapses from heart failure and enters a state of brain death. Meanwhile, his son Oswald makes plans for his father to never again awaken. Oswald hires a shyster lawyer who attempts to legitimize Grummond’s termination by claiming that the multi-billionaire is no longer truly alive and that he has given Oswald “implied consent” to make decisions regarding his fate. This play depicts a battle over a principle: the question of whether anybody has the right to terminate an innocent individual’s life against his explicit wishes.

This is the Second Edition of Implied Consent, with original and freely downloadable cover art by Wendy Stolyarov. This play was originally written in December 2004 and January 2005; the First Edition was published in May 2007.

The Second Edition of Implied Consent is available in PDF, MOBI, and EPUB formats.

Download the PDF version.

Download the MOBI version.

Download the EPUB version.

The Rational Argumentator welcomes your reviews of Implied Consent. You can submit them to TRA by sending them to gennadystolyarovii@yahoo.com. You are also encouraged to spread the word by reprinting the information on this page or your own comments concerning the book on other media outlets.

If You Like the Surveillance State, You’ll Love E-Verify – Article by Ron Paul

If You Like the Surveillance State, You’ll Love E-Verify – Article by Ron Paul

The New Renaissance Hat
Ron Paul
June 30, 2013
******************************

From massive NSA spying, to IRS targeting of the administration’s political opponents, to collection and sharing of our healthcare information as part of Obamacare, it seems every day we learn of another assault on our privacy. Sadly, this week the Senate took another significant, if little-noticed, step toward creating an authoritarian surveillance state. Buried in the immigration bill is a national identification system called mandatory E-Verify.

The Senate did not spend much time discussing E-Verify, and what little discussion took place was mostly bipartisan praise for its effectiveness as a tool for preventing illegal immigrants from obtaining employment. It is a tragedy that mandatory E-Verify is not receiving more attention, as it will impact nearly every American’s privacy and liberty.

The mandatory E-Verify system requires Americans to carry a “tamper-proof” Social Security card. Before they can legally begin a job, American citizens will have to show the card to their prospective employers, who will then have to verify their identity and eligibility to hold a job in the US by running the information through the newly created federal E-Verify database. The database will contain photographs taken from passport files and state driver’s licenses. The law gives federal bureaucrats broad discretion in adding other “biometric” identifiers to the database. It also gives the bureaucracy broad authority to determine what features the “tamper-proof” card should contain.

Regardless of one’s views on immigration, the idea that we should have to ask permission from the federal government before taking a job ought to be offensive to all Americans. Under this system, many Americans will be denied the opportunity for work. The E-Verify database will falsely identify thousands as “ineligible,” forcing many to lose job opportunities while challenging government computer inaccuracies. E-Verify will also impose additional compliance costs on American businesses, at a time when they are struggling with Obamacare implementation and other regulations.

According to David Bier of Competitive Enterprise Institute, there is nothing stopping the use of E-Verify for purposes unrelated to work verification, and these expanded uses could be authorized by agency rule-making or executive order. So it is not inconceivable that, should this bill pass, the day may come when you are not be able to board an airplane or exercise your Second Amendment rights without being run through the E-Verify database. It is not outside the realm of possibility that the personal healthcare information that will soon be collected by the IRS and shared with other federal agencies as part of Obamacare will also be linked to the E-Verify system.

Those who dismiss these concerns as paranoid should consider that the same charges were leveled at those who warned that the PATRIOT Act could lead to the government collecting our phone records and spying on our Internet usage. Just as the PATRIOT Act was only supposed to be used against terrorists but is now used to bypass constitutional protections in matters having noting to do with terrorism or national security, the national ID/mandatory E-Verify database will not only be used to prevent illegal immigrants from gaining employment. Instead, it will eventually be used as another tool to monitor and control the American people.

The recent revelations of the extent of National Security Agency (NSA) spying on Americans, plus recent stories of IRS targeting Tea Party and similar groups for special scrutiny, demonstrates the dangers of trusting government with this type of power. Creation of a federal database with photos and possibly other “biometric” information about American citizens is a great leap forward for the surveillance state. All Americans who still care about limited government and individual liberty should strongly oppose E-Verify.

Ron Paul, MD, is a former three-time Republican candidate for U. S. President and Congressman from Texas.

This article is reprinted with permission.

Transhumanism, Technology, and Science: To Say It’s Impossible Is to Mock History Itself – Article by Franco Cortese

Transhumanism, Technology, and Science: To Say It’s Impossible Is to Mock History Itself – Article by Franco Cortese

The New Renaissance Hat
Franco Cortese
June 30, 2013
******************************
One of the most common arguments made against Transhumanism, Technoprogressivism, and the transformative potentials of emerging, converging, disruptive and transformative technologies may also be the weakest: technical infeasibility. While some thinkers attack the veracity of Transhumanist claims on moral grounds, arguing that we are committing a transgression against human dignity (in turn often based on ontological grounds of a static human nature that shan’t be tampered with) or on grounds of safety, arguing that humanity isn’t responsible enough to wield such technologies without unleashing their destructive capabilities, these categories of counter-argument (efficacy and safety, respectively) are more often than not made by people somewhat more familiar with the community and its common points of rhetoric.
***
In other words these are the real salient and significant problems needing to be addressed by Transhumanist and Technoprogressive communities. The good news is that the ones making the most progress in terms of deliberating the possible repercussions of emerging technologies are Transhumanist and Technoprogressive communities. The large majority of thinkers and theoreticians working on Existential Risk and Global Catastrophic Risk, like The Future of Humanity Institute and the Lifeboat Foundation, share Technoprogressive inclinations. Meanwhile, the largest proponents of the need to ensure wide availability of enhancement technologies, as well as the need for provision of personhood rights to non-biologically-substrated persons, are found amidst the ranks of Technoprogressive Think Tanks like the IEET.
***

A more frequent Anti-Transhumanist and Anti-Technoprogressive counter-argument, by contrast, and one most often launched by people approaching Transhumanist and Technoprogressive communities from the outside, with little familiarity with their common points of rhetoric, is the claim of technical infeasibility based upon little more than sheer incredulity.

Sometimes a concept or notion simply seems too unprecedented to be possible. But it’s just too easy for us to get stuck in a spacetime rut along the continuum of culture and feel that if something were possible, it would have either already happened or would be in the final stages of completion today. “If something is possible, when why hasn’t anyone done it Shouldn’t the fact that it has yet to be accomplished indicate that it isn’t possible?” This conflates ought with is (which Hume showed us is a fallacy) and ought with can. Ought is not necessarily correlative with either. At the risk of saying the laughably-obvious, something must occur at some point in order for it to occur at all. The Moon landing happened in 1969 because it happened in 1969, and to have argued in 1968 that it simply wasn’t possible solely because it had never been done before would not have been  a valid argument for its technical infeasibility.

If history has shown us anything, it has shown us that history is a fantastically poor indicator of what will and will not become feasible in the future. Statistically speaking, it seems as though the majority of things that were said to be impossible to implement via technology have nonetheless come into being. Likewise, it seems as though the majority of feats it was said to be possible to facilitate via technology have also come into being. The ability to possiblize the seemingly impossible via technological and methodological in(ter)vention has been exemplified throughout the course of human history so prominently that we might as well consider it a statistical law.

We can feel the sheer fallibility of the infeasibility-from-incredulity argument intuitively when we consider how credible it would have seemed a mere 100 years ago to claim that we would soon be able to send sentences into the air, to be routed to a device in your pocket (and only your pocket, not the device in the pocket of the person sitting right beside you). How likely would it have seemed 200 years ago if you claimed that 200 years hence it would be possible to sit comfortably and quietly in a chair in the sky, inside a large tube of metal that fails to fall fatally to the ground?

Simply look around you. An idiosyncratic genus of great ape did this! Consider how remarkably absurd it would seem for the gorilla genus to have coordinated their efforts to build skyscrapers; to engineer devices that took them to the Moon; to be able to send a warning or mating call to the other side of the earth in less time than such a call could actually be made via physical vocal cords. We live in a world of artificial wonder, and act as though it were the most mundane thing in the world. But considered in terms of geological time, the unprecedented feat of culture and artificial artifact just happened. We are still in the fledging infancy of the future, which only began when we began making it ourselves.
***

We have no reason whatsoever to doubt the eventual technological feasibility of anything, really, when we consider all the things that were said to be impossible yet happened, all the things that were said to be possible and did happen, and all the things that were unforeseen completely yet happened nonetheless. In light of history, it seems more likely than a given thing would eventually be possible via technology than that it wouldn’t ever be possible. I fully appreciate the grandeur of this claim – but I stand by it nonetheless. To claim that a given ability will probably not be eventually possible to implement via technology is to laugh in the face of history to some extent.

The main exceptions to this claim are abilities wherein you limit or specify the route of implementation. Thus it probably would not be eventually possible to, say, infer the states of all the atoms comprising the Eifel Tower from the state of a single atom in your fingernail: categories of ability where you specify the implementation as the end-ability – as in the case above, the end ability was to infer the state of all the atoms in the Eifel Tower from the state of a single atom.

These exceptions also serve to illustrate the paramount feature allowing technology to possiblize the seemingly improbable: novel means of implementation. Very often there is a bottleneck in the current system we use to accomplish something that limits the scope of tis abilities and prevents certain objectives from being facilitated by it. In such cases a whole new paradigm of approach is what moves progress forward to realizing that objective. If the goal is the reversal and indefinite remediation of the causes and sources of aging, the paradigms of medicine available at the turn of the 20th century would have seemed to be unable to accomplish such a feat.

The new paradigm of biotechnology and genetic engineering was needed to formulate a scientifically plausible route to the reversal of aging-correlated molecular damage – a paradigm somewhat non-inherent in the medical paradigms and practices common at the turn of the 20th Century. It is the notion of a new route to implementation, a wholly novel way of making the changes that could lead to a given desired objective, that constitutes the real ability-actualizing capacity of technology – and one that such cases of specified implementation fail to take account of.

One might think that there are other clear exceptions to this as well: devices or abilities that contradict the laws of physics as we currently understand them – e.g., perpetual-motion machines. Yet even here we see many historical antecedents exemplifying our short-sighted foresight in regard to “the laws of physics”. Our understanding of the physical “laws” of the universe undergo massive upheaval from generation to generation. Thomas Kuhn’s The Structure of Scientific Revolutions challenged the predominant view that scientific progress occurred by accumulated development and discovery when he argued that scientific progress is instead driven by the rise of new conceptual paradigms categorically dissimilar to those that preceded it (Kuhn, 1962), and which then define the new predominant directions in research, development, and discovery in almost all areas of scientific discovery and conceptualization.

Kuhn’s insight can be seen to be paralleled by the recent rise in popularity of Singularitarianism, which today seems to have lost its strict association with I.J. Good‘s posited type of intelligence explosion created via recursively self-modifying strong AI, and now seems to encompass any vision of a profound transformation of humanity or society through technological growth, and the introduction of truly disruptive emerging and converging (e.g., NBIC) technologies.

This epistemic paradigm holds that the future is less determined by the smooth progression of existing trends and more by the massive impact of specific technologies and occurrences – the revolution of innovation. Kurzweil’s own version of Singularitarianism (Kurzweil, 2005) uses the systemic progression of trends in order to predict a state of affairs created by the convergence of such trends, wherein the predictable progression of trends points to their own destruction in a sense, as the trends culminate in our inability to predict past that point. We can predict that there are factors that will significantly impede our predictive ability thereafter. Kurzweil’s and Kuhn’s thinking are also paralleled by Buckminster Fuller in his notion of ephemeralization (i.e., doing more with less), the post-industrial information economies and socioeconomic paradigms described by Alvin Toffler (Toffler, 1970), John Naisbitt (Naisbitt 1982), and Daniel Bell (Bell, 1973), among others.

It can also partly be seen to be inherent in almost all formulations of technological determinism, especially variants of what I call reciprocal technological determinism (not simply that technology determines or largely constitutes the determining factors of societal states of affairs, not simply that tech affects culture, but rather than culture affects technology which then affects culture which then affects technology) a là Marshall McLuhan (McLuhan, 1964) . This broad epistemic paradigm, wherein the state of progress is more determined by small but radically disruptive changes, innovation, and deviations rather than the continuation or convergence of smooth and slow-changing trends, can be seen to be inherent in variants of technological determinism because technology is ipso facto (or by its very defining attributes) categorically new and paradigmically disruptive, and if culture is affected significantly by technology, then it is also affected by punctuated instances of unintended radical innovation untended by trends.

That being said, as Kurzweil has noted, a given technological paradigm “grows out of” the paradigm preceding it, and so the extents and conditions of a given paradigm will to some extent determine the conditions and allowances of the next paradigm. But that is not to say that they are predictable; they may be inherent while still remaining non-apparent. After all, the increasing trend of mechanical components’ increasing miniaturization could be seen hundreds of years ago (e.g., Babbage knew that the mechanical precision available via the manufacturing paradigms of his time would impede his ability in realizing his Baggage Engine, but that its implementation would one day be possible by the trend of increasingly precise manufacturing standards), but the fact that it could continue to culminate in the ephemeralization of Bucky Fuller (Fuller, 1976) or the mechanosynthesis of K. Eric Drexler (Drexler, 1986).

Moreover, the types of occurrence allowed by a given scientific or methodological paradigm seem at least intuitively to expand, rather than contract, as we move forward through history. This can be seen lucidly in the rise of Quantum Physics in the early 20th Century, which delivered such conceptual affronts to our intuitive notions of the possible as non-locality (i.e., quantum entanglement – and with it quantum information teleportation and even quantum energy teleportation, or in other words faster-than-light causal correlation between spatially separated physical entities), Einstein’s theory of relativity (which implied such counter-intuitive notions as measurement of quantities being relative to the velocity of the observer, e.g., the passing of time as measured by clocks will be different in space than on earth), and the hidden-variable theory of David Bohm (which implied such notions as the velocity of any one particle being determined by the configuration of the entire universe). These notions belligerently contradict what we feel intuitively to be possible. Here we have claims that such strange abilities as informational and energetic teleportation, faster-than-light causality (or at least faster-than-light correlation of physical and/or informational states) and spacetime dilation are natural, non-technological properties and abilities of the physical universe.

Technology is Man’s foremost mediator of change; it is by and large through the use of technology that we expand the parameters of the possible. This is why the fact that these seemingly fantastic feats were claimed to be possible “naturally”, without technological implementation or mediation, is so significant. The notion that they are possible without technology makes them all the more fantastical and intuitively improbable.

We also sometimes forget the even more fantastic claims of what can be done through the use of technology, such as stellar engineering and mega-scale engineering, made by some of big names in science. There is the Dyson Sphere of Freeman Dyson, which details a technological method of harnessing potentially the entire energetic output of a star (Dyson,  1960). One can also find speculation made by Dyson concerning the ability for “life and communication [to] continue for ever, using a finite store of energy” in an open universe by utilizing smaller and smaller amounts of energy to power slower and slower computationally emulated instances of thought (Dyson, 1979).

There is the Tipler Cylinder (also called the Tipler Time Machine) of Frank J. Tipler, which described a dense cylinder of infinite length rotating about its longitudinal axis to create closed timelike curves (Tipler, 1974). While Tipler speculated that a cylinder of finite length could produce the same effect if rotated fast enough, he didn’t provide a mathematical solution for this second claim. There is also speculation by Tipler on the ability to utilize energy harnessed from gravitational shear created by the forced collapse of the universe at different rates and different directions, which he argues would allow the universe’s computational capacity to diverge to infinity, essentially providing computationally emulated humans and civilizations the ability to run for an infinite duration of subjective time (Tipler, 1986, 1997).

We see such feats of technological grandeur paralleled by Kurt Gödel, who produced an exact solution to the Einstein field equations that describes a cosmological model of a rotating universe (Gödel, 1949). While cosmological evidence (e.g., suggesting that our universe is not a rotating one) indicates that his solution doesn’t describe the universe we live in, it nonetheless constitutes a hypothetically possible cosmology in which time-travel (again, via a closed timelike curve) is possible. And because closed timelike curves seem to require large amounts of acceleration – i.e. amounts not attainable without the use of technology – Gödel’s case constitutes a hypothetical cosmological model allowing for technological time-travel (which might be non-obvious, since Gödel’s case doesn’t involve such technological feats as a rotating cylinder of infinite length, rather being a result derived from specific physical and cosmological – i.e., non-technological – constants and properties).

These are large claims made by large names in science (i.e., people who do not make claims frivolously, and in most cases require quantitative indications of their possibility, often in the form of mathematical solutions, as in the cases mentioned above) and all of which are made possible solely through the use of technology. Such technological feats as the computational emulation of the human nervous system and the technological eradication of involuntary death pale in comparison to the sheer grandeur of the claims and conceptualizations outlined above.

We live in a very strange universe, which is easy to forget midst our feigned mundanity. We have no excuse to express incredulity at Transhumanist and Technoprogressive conceptualizations considering how stoically we accept such notions as the existence of sentient matter (i.e., biological intelligence) or the ability of a genus of great ape to stand on extraterrestrial land.

Thus, one of the most common counter-arguments launched at many Transhumanist and Technoprogressive claims and conceptualizations – namely, technical infeasibility based upon nothing more than incredulity and/or the lack of a definitive historical precedent – is one of the most baseless counter-arguments as well. It would be far more credible to argue for the technical infeasibility of a given endeavor within a certain time-frame. Not only do we have little, if any, indication that a given ability or endeavor will fail to eventually become realizable via technology given enough development-time, but we even have historical indication of the very antithesis of this claim, in the form of the many, many instances in which a given endeavor or feat was said to be impossible, only to be realized via technological mediation thereafter.

It is high time we accepted the fallibility of base incredulity and the infeasibility of the technical-infeasibility argument. I remain stoically incredulous at the audacity of fundamental incredulity, for nothing should be incredulous to man, who makes his own credibility in any case, and who is most at home in the necessary superfluous.

Franco Cortese is an editor for Transhumanity.net, as well as one of its most frequent contributors.  He has also published articles and essays on Immortal Life and The Rational Argumentator. He contributed 4 essays and 7 debate responses to the digital anthology Human Destiny is to Eliminate Death: Essays, Rants and Arguments About Immortality.

Franco is an Advisor for Lifeboat Foundation (on its Futurists Board and its Life Extension Board) and contributes regularly to its blog.

References

Bell, D. (1973). “The Coming of Post-Industrial Society: A Venture in Social Forecasting, Daniel Bell.” New York: Basic Books, ISBN 0-465-01281-7.

Dyson, F. (1960) “Search for Artificial Stellar Sources of Infrared Radiation”. Science 131: 1667-1668.

Dyson, F. (1979). “Time without end: Physics and biology in an open universe,” Reviews of Modern Physics 51 (3): 447-460.

Fuller, R.B. (1938). “Nine Chains to the Moon.” Anchor Books pp. 252–59.

Gödel, K. (1949). “An example of a new type of cosmological solution of Einstein’s field equations of gravitation”. Rev. Mod. Phys. 21 (3): 447–450.

Kuhn, Thomas S. (1962). “The Structure of Scientific Revolutions (1st ed.).” University of Chicago Press. LCCN 62019621.

Kurzweil, R. (2005). “The Singularity is Near.” Penguin Books.

Mcluhan, M. (1964). “Understanding Media: The Extensions of Man”. 1st Ed. McGraw Hill, NY.

Niasbitt, J. (1982). “Megatrends.” Ten New Directions Transforming Our Lives. Warner Books.

Tipler, F. (1974) “Rotating Cylinders and Global Causality Violation”. Physical Review D9, 2203-2206.

Tipler, F. (1986). “Cosmological Limits on Computation”, International Journal of Theoretical Physics 25 (6): 617-661.

Tipler, F. (1997). The Physics of Immortality: Modern Cosmology, God and the Resurrection of the Dead. New York: Doubleday. ISBN 0-385-46798-2.

Toffler, A. (1970). “Future shock.” New York: Random House.

What We Have Learned from Afghanistan – Article by Ron Paul

What We Have Learned from Afghanistan – Article by Ron Paul

The New Renaissance Hat
Ron Paul
June 23, 2013
******************************

Last week the Taliban opened an office in Doha, Qatar with the US government’s blessing. They raised the Taliban flag at the opening ceremony and referred to Afghanistan as the “Islamic Emirate of Afghanistan”—the name they used when they were in charge before the US attack in 2001.

The US had meant for the Taliban office in Doha to be only a venue for a new round of talks on an end to the war in Afghanistan. The Taliban opening looked very much like a government in exile. The Karzai government was annoyed that the US and the Taliban had scheduled talks without even notifying Kabul. Karzai’s government felt as irrelevant to negotiations on post-war Afghanistan as they soon will be on the ground. It seemed strangely like Paris in 1968, where the US met with North Vietnamese representatives to negotiate a way out of that war, which claimed nearly 60,000 Americans and many times that number of Vietnamese lives.

For years many of us had argued the need to get out of Afghanistan. To end the fighting, the dying, the destruction, the nation-building. To end the foolish fantasy that we were building a Western-style democracy there. We cannot leave, we were told for all those years. If we leave Afghanistan now, the Taliban will come back! Well guess what, after 12 years, trillions of dollars, more than 2,200 Americans killed, and perhaps more than 50,000 dead Afghan civilians and fighters, the Taliban is coming back anyway!

The long US war in Afghanistan never made any sense in the first place. The Taliban did not attack the US on 9/11. The Authorization for the use of force that we passed after the attacks of 9/11 said nothing about a decade-long occupation of Afghanistan. But unfortunately two US presidents have taken it to mean that they could make war anywhere at any time they please. Congress, as usual, did nothing to rein in the president, although several Members tried to repeal the authorization.

Afghanistan brought the Soviet Union to its knees. We learned nothing from it.

We left Iraq after a decade of fighting, and the country is in far worse shape than when we attacked in 2003. After trillions of dollars wasted and tens of thousands of lives lost, Iraq is a devastated, desperate, and violent place with a presence of al-Qaeda. No one in his right mind speaks of a US victory in Iraq these days. We learned nothing from it.

We are leaving Afghanistan after 12 years with nothing to show for it but trillions of dollars wasted and thousands of lives lost. Afghanistan is a devastated country with a weak, puppet government—and now we negotiate with those very people we fought for those 12 years, who are preparing to return to power! Still we learn nothing.

Instead of learning from these disasters brought about by the interventionists and their failed foreign policy, the president is now telling us that we have to go into Syria!

US Army Col. Harry Summers told a story about a meeting he had with a North Vietnamese colonel named Tu while he visiting Hanoi in 1975. At the meeting, Col. Summers told Tu, “You know, you never defeated us on the battlefield.” Tu paused for a moment, then replied, “That may be so. But it is also irrelevant.”

Sadly, that is the story of our foreign policy. We have attacked at least five countries since 9/11. We have launched drones against many more. We have deposed several dictators and destroyed several foreign armies. But, looking around at what has been achieved, it is clear: it is all irrelevant.

Ron Paul, MD, is a former three-time Republican candidate for U. S. President and Congressman from Texas.

This article is reprinted with permission.

Intimations of Imitations: Visions of Cellular Prosthesis and Functionally Restorative Medicine – Article by Franco Cortese

Intimations of Imitations: Visions of Cellular Prosthesis and Functionally Restorative Medicine – Article by Franco Cortese

The New Renaissance Hat
Franco Cortese
June 23, 2013
******************************

In this essay I argue that technologies and techniques used and developed in the fields of Synthetic Ion Channels and Ion-Channel Reconstitution, which have emerged from the fields of supramolecular chemistry and bio-organic chemistry throughout the past 4 decades, can be applied towards the purpose of gradual cellular (and particularly neuronal) replacement to create a new interdisciplinary field that applies such techniques and technologies towards the goal of the indefinite functional restoration of cellular mechanisms and systems, as opposed to their current proposed use of aiding in the elucidation of cellular mechanisms and their underlying principles, and as biosensors.

In earlier essays (see here and here) I identified approaches to the synthesis of non-biological functional equivalents of neuronal components (i.e., ion-channels, ion-pumps, and membrane sections) and their sectional integration with the existing biological neuron — a sort of “physical” emulation, if you will. It has only recently come to my attention that there is an existing field emerging from supramolecular and bio-organic chemistry centered around the design, synthesis, and incorporation/integration of both synthetic/artificial ion channels and artificial bilipid membranes (i.e., lipid bilayer). The potential uses for such channels commonly listed in the literature have nothing to do with life-extension, however, and the field is, to my knowledge, yet to envision the use of replacing our existing neuronal components as they degrade (or before they are able to), rather seeing such uses as aiding in the elucidation of cellular operations and mechanisms and as biosensors. I argue here that the very technologies and techniques that constitute the field (Synthetic Ion Channels & Ion-Channel/Membrane Reconstitution) can be used towards the purposes of indefinite longevity and life-extension through the iterative replacement of cellular constituents (particularly the components comprising our neurons – ion-channels, ion-pumps, sections of bi-lipid membrane, etc.) so as to negate the molecular degradation they would have otherwise eventually undergone.

While I envisioned an electro-mechanical-systems approach in my earlier essays, the field of Synthetic Ion-Channels from the start in the early 1970s applied a molecular approach to the problem of designing molecular systems that produce certain functions according to their chemical composition or structure. Note that this approach corresponds to (or can be categorized under) the passive-physicalist sub-approach of the physicalist-functionalist approach (the broad approach overlying all varieties of physically embodied, “prosthetic” neuronal functional replication) identified in an earlier essay.

The field of synthetic ion channels is also referred to as ion-channel reconstitution, which designates “the solubilization of the membrane, the isolation of the channel protein from the other membrane constituents and the reintroduction of that protein into some form of artificial membrane system that facilitates the measurement of channel function,” and more broadly denotes “the [general] study of ion channel function and can be used to describe the incorporation of intact membrane vesicles, including the protein of interest, into artificial membrane systems that allow the properties of the channel to be investigated” [1]. The field has been active since the 1970s, with experimental successes in the incorporation of functioning synthetic ion channels into biological bilipid membranes and artificial membranes dissimilar in molecular composition and structure to biological analogues underlying supramolecular interactions, ion selectivity, and permeability throughout the 1980s, 1990s, and 2000s. The relevant literature suggests that their proposed use has thus far been limited to the elucidation of ion-channel function and operation, the investigation of their functional and biophysical properties, and to a lesser degree for the purpose of “in-vitro sensing devices to detect the presence of physiologically active substances including antiseptics, antibiotics, neurotransmitters, and others” through the “… transduction of bioelectrical and biochemical events into measurable electrical signals” [2].

Thus my proposal of gradually integrating artificial ion-channels and/or artificial membrane sections for the purpose of indefinite longevity (that is, their use in replacing existing biological neurons towards the aim of gradual substrate replacement, or indeed even in the alternative use of constructing artificial neurons to — rather than replace existing biological neurons — become integrated with existing biological neural networks towards the aim of intelligence amplification and augmentation while assuming functional and experiential continuity with our existing biological nervous system) appears to be novel, while the notion of artificial ion-channels and neuronal membrane systems ion in general had already been conceived (and successfully created/experimentally verified, though presumably not integrated in vivo).

The field of Functionally Restorative Medicine (and the orphan sub-field of whole-brain gradual-substrate replacement, or “physically embodied” brain-emulation, if you like) can take advantage of the decades of experimental progress in this field, incorporating both the technological and methodological infrastructures used in and underlying the field of Ion-Channel Reconstitution and Synthetic/Artificial Ion Channels & Membrane-Systems (and the technologies and methodologies underlying their corresponding experimental-verification and incorporation techniques) for the purpose of indefinite functional restoration via the gradual and iterative replacement of neuronal components (including sections of bilipid membrane, ion channels, and ion pumps) by MEMS (micro-electrocal-mechanical systems) or more likely NEMS (nano-electro-mechanical systems).

The technological and methodological infrastructure underlying this field can be utilized for both the creation of artificial neurons and for the artificial synthesis of normative biological neurons. Much work in the field required artificially synthesizing cellular components (e.g., bilipid membranes) with structural and functional properties as similar to normative biological cells as possible, so that the alternative designs (i.e., dissimilar to the normal structural and functional modalities of biological cells or cellular components) and how they affect and elucidate cellular properties, could be effectively tested. The iterative replacement of either single neurons, or the sectional replacement of neurons with synthesized cellular components (including sections of the bi-lipid membrane, voltage-dependent ion-channels, ligand-dependent ion channels, ion pumps, etc.) is made possible by the large body of work already done in the field. Consequently the technological, methodological, and experimental infrastructures developed for the fields of Synthetic Ion Channels and Ion-Channel/Artificial-Membrane Reconstitution can be utilized for the purpose of (a) iterative replacement and cellular upkeep via biological analogues (or not differing significantly in structure or functional and operational modality to their normal biological counterparts) and/or (b) iterative replacement with non-biological analogues of alternate structural and/or functional modalities.

Rather than sensing when a given component degrades and then replacing it with an artificially-synthesized biological or non-biological analogue, it appears to be much more efficient to determine the projected time it takes for a given component to degrade or otherwise lose functionality, and simply automate the iterative replacement in this fashion, without providing in vivo systems for detecting molecular or structural degradation. This would allow us to achieve both experimental and pragmatic success in such cellular prosthesis sooner, because it doesn’t rely on the complex technological and methodological infrastructure underlying in vivo sensing, especially on the scale of single neuron components like ion-channels, and without causing operational or functional distortion to the components being sensed.

A survey of progress in the field [3] lists several broad design motifs. I will first list the deign motifs falling within the scope of the survey, and the examples it provides. Selections from both papers are meant to show the depth and breadth of the field, rather than to elucidate the specific chemical or kinetic operations under the purview of each design-variety.

For a much more comprehensive, interactive bibliography of papers falling within the field of Synthetic Ion Channels or constituting the historical foundations of the field, see Jon Chui’s online biography here, which charts the developments in this field up until 2011.

First Survey

Unimolecular ion channels:

Examples include (a) synthetic ion channels with oligocrown ionophores, [5] (b) using a-helical peptide scaffolds and rigid push–pull p-octiphenyl scaffolds for the recognition of polarized membranes, [6] and (c) modified varieties of the b-helical scaffold of gramicidin A [7].

Barrel-stave supramolecules:

Examples of this general class falling include voltage-gated synthetic ion channels formed by macrocyclic bolaamphiphiles and rigidrod p-octiphenyl polyols [8].

Macrocyclic, branched and linear non-peptide bolaamphiphiles as staves:

Examples of this sub-class include synthetic ion channels formed by (a) macrocyclic, branched and linear bolaamphiphiles, and dimeric steroids, [9] and by (b) non-peptide macrocycles, acyclic analogs, and peptide macrocycles (respectively) containing abiotic amino acids [10].

Dimeric steroid staves:

Examples of this sub-class include channels using polydroxylated norcholentriol dimers [11].

p-Oligophenyls as staves in rigid-rod ß-barrels:

Examples of this sub-class include “cylindrical self-assembly of rigid-rod ß-barrel pores preorganized by the nonplanarity of p-octiphenyl staves in octapeptide-p-octiphenyl monomers” [12].

Synthetic polymers:

Examples of this sub-class include synthetic ion channels and pores comprised of (a) polyalanine, (b) polyisocyanates, (c) polyacrylates, [13] formed by (i) ionophoric, (ii) ‘smart’, and (iii) cationic polymers [14]; (d) surface-attached poly(vinyl-n-alkylpyridinium) [15]; (e) cationic oligo-polymers [16], and (f) poly(m-phenylene ethylenes) [17].

Helical b-peptides (used as staves in barrel-stave method):

Examples of this class include cationic b-peptides with antibiotic activity, presumably acting as amphiphilic helices that form micellar pores in anionic bilayer membranes [18].

Monomeric steroids:

Examples of this sub-class include synthetic carriers, channels and pores formed by monomeric steroids [19], synthetic cationic steroid antibiotics that may act by forming micellar pores in anionic membranes [20], neutral steroids as anion carriers [21], and supramolecular ion channels [22].

Complex minimalist systems:

Examples of this sub-class falling within the scope of this survey include ‘minimalist’ amphiphiles as synthetic ion channels and pores [23], membrane-active ‘smart’ double-chain amphiphiles, expected to form ‘micellar pores’ or self-assemble into ion channels in response to acid or light [24], and double-chain amphiphiles that may form ‘micellar pores’ at the boundary between photopolymerized and host bilayer domains and representative peptide conjugates that may self-assemble into supramolecular pores or exhibit antibiotic activity [25].

Non-peptide macrocycles as hoops:

Examples of this sub-class falling within the scope of this survey include synthetic ion channels formed by non-peptide macrocycles acyclic analogs [26] and peptide macrocycles containing abiotic amino acids [27].

Peptide macrocycles as hoops and staves:

Examples of this sub-class include (a) synthetic ion channels formed by self-assembly of macrocyclic peptides into genuine barrel-hoop motifs that mimic the b-helix of gramicidin A with cyclic ß-sheets. The macrocycles are designed to bind on top of channels and cationic antibiotics (and several analogs) are proposed to form micellar pores in anionic membranes [28]; (b) synthetic carriers, antibiotics (and analogs), and pores (and analogs) formed by macrocyclic peptides with non-natural subunits. Certain macrocycles may act as ß-sheets, possibly as staves of ß-barrel-like pores [29]; (c) bioengineered pores as sensors. Covalent capturing and fragmentations have been observed on the single-molecule level within engineered a-hemolysin pore containing an internal reactive thiol [30].

Summary

Thus even without knowledge of supramolecular or organic chemistry, one can see that a variety of alternate approaches to the creation of synthetic ion channels, and several sub-approaches within each larger ‘design motif’ or broad-approach, not only exist but have been experimentally verified, varietized, and refined.

Second Survey

The following selections [31] illustrate the chemical, structural, and functional varieties of synthetic ions categorized according to whether they are cation-conducting or anion-conducting, respectively. These examples are used to further emphasize the extent of the field, and the number of alternative approaches to synthetic ion-channel design, implementation, integration, and experimental verification already existent. Permission to use all the following selections and figures was obtained from the author of the source.

There are 6 classical design-motifs for synthetic ion-channels, categorized by structure, that are identified within the paper:

A: Unimolecular macromolecules,
B: Complex barrel-stave,
C: Barrel-rosette,
D: Barrel hoop, and
E: Micellar supramolecules.

Cation Conducting Channels:

UNIMOLECULAR

“The first non-peptidic artificial ion channel was reported by Kobuke et al. in 1992” [33].

“The channel contained “an amphiphilic ion pair consisting of oligoether-carboxylates and mono– (or di-) octadecylammoniumcations. The carboxylates formed the channel core and the cations formed the hydrophobic outer wall, which was embedded in the bilipid membrane with a channel length of about 24 to 30 Å. The resultant ion channel, formed from molecular self-assembly, is cation-selective and voltage-dependent” [34].

“Later, Kokube et al. synthesized another channel comprising of resorcinol-based cyclic tetramer as the building block. The resorcin-[4]-arenemonomer consisted of four long alkyl chains which aggregated to form a dimeric supramolecular structure resembling that of Gramicidin A” [35]. “Gokel et al. had studied [a set of] simple yet fully functional ion channels known as “hydraphiles” [39].

“An example (channel 3) is shown in Figure 1.6, consisting of diaza-18-crown-6 crown ether groups and alkyl chains as side arms and spacers. Channel 3 is capable of transporting protons across the bilayer membrane” [40].

“A covalently bonded macrotetracycle (Figure 1.8) had shown to be about three times more active than Gokel’s ‘hydraphile’ channel, and its amide-containing analogue also showed enhanced activity” [44].

“Inorganic derivative using crown ethers have also been synthesized. Hall et al. synthesized an ion channel consisting of a ferrocene and 4 diaza-18-crown-6 linked by 2 dodecyl chains (Figure 1.9). The ion channel was redox-active as oxidation of the ferrocene caused the compound to switch to an inactive form” [45].

B-STAVES:

“These are more difficult to synthesize [in comparison to unimolecular varieties] because the channel formation usually involves self-assembly via non-covalent interactions” [47].“A cyclic peptide composed of even number of alternating D– and L-amino acids (Figure 1.10) was suggested to form barrel-hoop structure through backbone-backbone hydrogen bonds by De Santis” [49].

“A tubular nanotube synthesized by Ghadiri et al. consisting of cyclic D and L peptide subunits form a flat, ring-shaped conformation that stack through an extensive anti-parallel ß-sheet-like hydrogen bonding interaction (Figure 1.11)” [51].

“Experimental results have shown that the channel can transport sodium and potassium ions. The channel can also be constructed by the use of direct covalent bonding between the sheets so as to increase the thermodynamic and kinetic stability” [52].

“By attaching peptides to the octiphenyl scaffold, a ß-barrel can be formed via self-assembly through the formation of ß-sheet structures between the peptide chains (Figure 1.13)” [53].

“The same scaffold was used by Matile et al. to mimic the structure of macrolide antibiotic amphotericin B. The channel synthesized was shown to transport cations across the membrane” [54].

“Attaching the electron-poor naphthalene diimide (NDIs) to the same octiphenyl scaffold led to the hoop-stave mismatch during self-assembly that results in a twisted and closed channel conformation (Figure 1.14). Adding the complementary dialkoxynaphthalene (DAN) donor led to the cooperative interactions between NDI and DAN that favors the formation of barrel-stave ion channel.” [57].

MICELLAR

“These aggregate channels are formed by amphotericin involving both sterols and antibiotics arranged in two half-channel sections within the membrane” [58].

“An active form of the compound is the bolaamphiphiles (two-headed amphiphiles). Figure 1.15 shows an example that forms an active channel structure through dimerization or trimerization within the bilayer membrane. Electrochemical studies had shown that the monomer is inactive and the active form involves dimer or larger aggregates” [60].

ANION CONDUCTING CHANNELS:

“A highly active, anion selective, monomeric cyclodextrin-based ion channel was designed by Madhavan et al. (Figure 1.16). Oligoether chains were attached to the primary face of the ß-cyclodextrin head group via amide bonds. The hydrophobic oligoether chains were chosen because they are long enough to span the entire lipid bilayer. The channel was able to select “anions over cations” and “discriminate among halide anions in the order I- > Br- > Cl- (following Hofmeister series)” [61].

“The anion selectivity occurred via the ring of ammonium cations being positioned just beside the cyclodextrin head group, which helped to facilitate anion selectivity. Iodide ions were transported the fastest because the activation barrier to enter the hydrophobic channel core is lower for I- compared to either Br- or Cl-” [62]. “A more specific artificial anion selective ion channel was the chloride selective ion channel synthesized by Gokel. The building block involved a heptapeptide with Proline incorporated (Figure 1.17)” [63].

Cellular Prosthesis: Inklings of a New Interdisciplinary Approach

The paper cites “nanoreactors for catalysis and chemical or biological sensors” and “interdisciplinary uses as nano –filtration membrane, drug or gene delivery vehicles/transporters as well as channel-based antibiotics that may kill bacterial cells preferentially over mammalian cells” as some of the main applications of synthetic ion-channels [65], other than their normative use in elucidating cellular function and operation.

However, I argue that a whole interdisciplinary field and heretofore-unrecognized new approach or sub-field of Functionally Restorative Medicine is possible through taking the technologies and techniques involved in constructing, integrating, and experimentally verifying either (a) non-biological analogues of ion-channels and ion-pumps (thus trans-membrane membrane proteins in general, also sometimes referred to as transport proteins or integral membrane proteins) and membranes (which include normative bilipid membranes, non-lipid membranes and chemically-augmented bilipid membranes), and (b) the artificial synthesis of biological analogues of ion-channels, ion-pumps and membranes, which are structurally and chemically equivalent to naturally-occurring biological components but which are synthesized artificially – and applying such technologies and techniques toward the purpose the gradual replacement of our existing biological neurons constituting our nervous systems – or at least those neuron-populations that comprise the neocortex and prefrontal cortex, and through iterative procedures of gradual replacement thereby achieving indefinite longevity. There is still work to be done in determining the comparative advantages and disadvantages of various structural and functional (i.e., design) motifs, and in the logistics of implanting the iterative replacement or reconstitution of ion-channels, ion-pumps and sections of neuronal membrane in vivo.

The conceptual schemes outlined in Concepts for Functional Replication of Biological Neurons [66], Gradual Neuron Replacement for the Preservation of Subjective-Continuity [67] and Wireless Synapses, Artificial Plasticity, and Neuromodulation [68] would constitute variations on the basic approach underlying this proposed, embryonic interdisciplinary field. Certain approaches within the fields of nanomedicine itself, particularly those approaches that constitute the functional emulation of existing cell-types, such as but not limited to Robert Freitas’s conceptual designs for the functional emulation of the red blood cell (a.k.a. erythrocytes, haematids) [69], i.e., the Resperocyte, itself should be seen as falling under the purview of this new approach, although not all approaches to Nanomedicine (diagnostics, drug-delivery and neuroelectronic interfacing) constitute the physical (i.e. electromechanical, kinetic, and/or molecular physically embodied) and functional emulation of biological cells.

The field of functionally-restorative medicine in general (and of nanomedicine in particular) and the fields of supramolecular and organic chemistry converge here, where these technological, methodological, and experimental infrastructures developed in the fields of Synthetic Ion-Channels and Ion Channel Reconstitution can be employed to develop a new interdisciplinary approach that applies the logic of prosthesis to the cellular and cellular-component (i.e., sub-cellular) scale; same tools, new use. These techniques could be used to iteratively replace the components of our neurons as they degrade, or to replace them with more robust systems that are less susceptible to molecular degradation. Instead of repairing the cellular DNA, RNA, and protein transcription and synthesis machinery, we bypass it completely by configuring and integrating the neuronal components (ion-channels, ion-pumps, and sections of bilipid membrane) directly.

Thus I suggest that theoreticians of nanomedicine look to the large quantity of literature already developed in the emerging fields of synthetic ion-channels and membrane-reconstitution, towards the objective of adapting and applying existing technologies and methodologies to the new purpose of iterative maintenance, upkeep and/or replacement of cellular (and particularly neuronal) constituents with either non-biological analogues or artificially synthesized but chemically/structurally equivalent biological analogues.

This new sub-field of Synthetic Biology needs a name to differentiate it from the other approaches to Functionally Restorative Medicine. I suggest the designation ‘cellular prosthesis’.

References:

[1] Williams (1994)., An introduction to the methods available for ion channel reconstitution. in D.C Ogden Microelectrode techniques, The Plymouth workshop edition, CambridgeCompany of Biologists.

[2] Tomich, J., Montal, M. (1996). U.S Patent No. 5,16,890. Washington, DC: U.S. Patent and Trademark Office.

[3] Matile, S., Som, A., & Sorde, N. (2004). Recent synthetic ion channels and pores. Tetrahedron, 60(31), 6405–6435. ISSN 0040–4020, 10.1016/j.tet.2004.05.052. Access: http://www.sciencedirect.com/science/article/pii/S0040402004007690:

[4] XIAO, F., (2009). Synthesis and structural investigations of pyridine-based aromatic foldamers.

[5] Ibid., p. 6411.

[6] Ibid., p. 6416.

[7] Ibid., p. 6413.

[8] Ibid., p. 6412.

[9] Ibid., p. 6414.

[10] Ibid., p. 6425.

[11] Ibid., p. 6427.

[12] Ibid., p. 6416.

[13] Ibid., p. 6419.

[14] Ibid.

[15] Ibid.

[16] Ibid., p. 6419.

[17] Ibid.

[18] Ibid., p. 6421.

[19] Ibid., p. 6422.

[20] Ibid.

[21] Ibid.

[22] Ibid.

[23] Ibid., p. 6423.

[24] Ibid.

[25] Ibid.

[26] Ibid., p. 6426.

[27] Ibid.

[28] Ibid., p. 6427.

[29] Ibid., p. 6327.

[30] Ibid., p. 6427.

[31] XIAO, F. (2009). Synthesis and structural investigations of pyridine-based aromatic foldamers.

[32] Ibid., p. 4.

[33] Ibid.

[34] Ibid.

[35] Ibid.

[36] Ibid., p. 7.

[37] Ibid., p. 8.

[38] Ibid., p. 7.

[39] Ibid.

[40] Ibid.

[41] Ibid.

[42] Ibid.

[43] Ibid., p. 8.

[44] Ibid.

[45] Ibid., p. 9.

[46] Ibid.

[47] Ibid.

[48] Ibid., p. 10.

[49] Ibid.

[50] Ibid.

[51] Ibid.

[52] Ibid., p. 11.

[53] Ibid., p. 12.

[54] Ibid.

[55] Ibid.

[56] Ibid.

[57] Ibid.

[58] Ibid., p. 13.

[59] Ibid.

[60] Ibid., p. 14.

[61] Ibid.

[62] Ibid.

[63] Ibid., p. 15.

[64] Ibid.

[65] Ibid.

[66] Cortese, F., (2013). Concepts for Functional Replication of Biological Neurons. The Rational Argumentator. Access: https://www.rationalargumentator.com/index/blog/2013/05/gradual-neuron-replacement/

[67] Cortese, F., (2013). Gradual Neuron Replacement for the Preservation of Subjective-Continuity. The Rational Argumentator. Access: https://www.rationalargumentator.com/index/blog/2013/05/gradual-neuron-replacement/

[68] Cortese, F., (2013). Wireless Synapses, Artificial Plasticity, and Neuromodulation. The Rational Argumentator. Access: https://www.rationalargumentator.com/index/blog/2013/05/wireless-synapses/

[69] Freitas Jr., R., (1998). “Exploratory Design in Medical Nanotechnology: A Mechanical Artificial Red Cell”. Artificial Cells, Blood Substitutes, and Immobil. Biotech. (26): 411–430. Access: http://www.ncbi.nlm.nih.gov/pubmed/9663339

The Eyes Watching You: “1984” and the Surveillance State – Article by Sarah Skwire

The Eyes Watching You: “1984” and the Surveillance State – Article by Sarah Skwire

The New Renaissance Hat
Sarah Skwire
June 19, 2013
******************************

George Orwell. 1984. New York: Plume, [1949] 2003. 323 pages.

In the kind of horrifying coincidence that surely would have prompted one of his more acerbic essays, the news that various U.S. government surveillance agencies have been gathering data from millions of citizens’ phones, email accounts, and web searches broke during the week of the 64th publication anniversary of George Orwell’s 1984. As the news reports poured in, and as sales of 1984 surged by an astonishing 6,884 percent, a friend asked me whether the PRISM story strikes me as more Orwellian or more Kafkaesque.

My response? We’d better hope it’s Kafkaesque.

No one wants to inhabit a Franz Kafka novel. But the surveillance states he describes do have one thing going for them—incompetence. In Kafka’s stories, important forms get lost, permits are unattainable, and bureaucrats fail to do their jobs. Like the main character in Kafka’s unfinished story, “The Castle,” if you were trapped in Kafka’s world you could live your whole life doing nothing but waiting for a permit. But at least you could live. Incompetence creates a little space.

What is terrifying about Orwell’s 1984 is the complete competence of the surveillance state. Winston Smith begins the novel by believing he is in an awful, but Kafkaesque world where there is still some slippage in the state’s absolute control, and still some room for private action. Winston says that Oceania’s world of telescreens and Thought Police means that there are “always the eyes watching you and the voice enveloping you. Asleep or awake, working or eating, indoors or out of doors, in the bath or in bed—no escape.” But he follows that by saying, “Nothing was your own except the few cubic centimeters inside your skull.” He also believes that while the diary he keeps will inevitably be discovered, the small alcove in his apartment where he writes his diary puts him “out of the range of the telescreen.”

The feeling that some tiny space for private thought and action can be found leads Winston into his relationship with Julia. Though they know they will inevitably be discovered, Winston and Julia believe that, for a time, their relationship and their meeting place will remain secret. They could not be more wrong.

One day after making love to Julia in their clandestine room, Winston, prompted by a singing thrush and a singing prole woman who is doing laundry, has a vision of a future that “belongs to the proles.”

The birds sang, the proles sang. The Party did not sing. All round the world, in London and New York, in Africa and Brazil, and in the mysterious, forbidden lands beyond the frontiers, in the streets of Paris and Berlin, in the villages of the endless Russian plain, in the bazaars of China and Japan—everywhere stood the same solid unconquerable figure, made monstrous by work and childbearing, toiling from birth to death and still singing. Out of those mighty loins a race of conscious beings must one day come. You were the dead; theirs was the future. But you could share in that future if you kept alive the mind as they kept alive the body.

 

In this very moment, just as Winston comes alive to what feels like hope and possibility and the dream of some kind of a future for humankind, the telescreen that has been hidden in the room all along speaks to Winston and Julia. The Thought Police break down the door. The couple is taken off to be imprisoned, tortured, and broken.

There has never been any private space for Winston or Julia—not in their “secret” meeting places, not in their sexual rebellion, not even in the few cubic centimeters inside their skulls. “For seven years the Thought Police had watched him like a beetle under a magnifying glass. There was no physical act, no word spoken aloud, that they had not noticed, no train of thought that they had not been able to infer.” Winston should have taken more seriously the description of Oceania he read in the forbidden book The Theory and Practice of Oligarchical Collectivism, by Emmanuel Goldstein:

A Party member lives from birth to death under the eye of the Thought Police. Even when he is alone he can never be sure that he is alone. Wherever he may be, asleep or awake, working or resting, in his bath or in bed, he can be inspected without warning and without knowing that he is being inspected. Nothing that he does is indifferent. His friendships, his relaxations, his behaviour towards his wife and children, the expression of his face when he is alone, the words he mutters in sleep, even the characteristic movements of his body, are all jealously scrutinized. Not only any actual misdemeanour, but any eccentricity, however small, any change of habits, any nervous mannerism that could possibly be the symptom of an inner struggle, is certain to be detected.
***

The Orwellian surveillance state is terrifying not because—as in Kafka—you might be arrested because of a rumor or a mistake, or because despite your innocence you might be caught in the surveillance state’s unnavigable maze. It is terrifying because it never makes mistakes. It does not need to listen to rumors. And it knows that no one is ever innocent.

Sarah Skwire is a fellow at Liberty Fund, Inc. She is a poet and author of the writing textbook Writing with a Thesis.

This article was originally published by The Foundation for Economic Education.