Browsed by
Tag: Franco Cortese

G. Stolyarov II and Franco Cortese Discuss Humankind’s Future

G. Stolyarov II and Franco Cortese Discuss Humankind’s Future

The New Renaissance Hat
G. Stolyarov II and Franco Cortese
March 6, 2015
******************************

Mr. Stolyarov invites life-extension advocate and wide-ranging future-oriented thinker Franco Cortese to discuss a broad array of ideas and possibilities regarding the future of humankind.

Apologies for the technical difficulties at the end. The conclusion of our discussion can be found here. The last several minutes of the conversation focus on how emerging technologies could help overcome current existential risks and help lead to the elimination of brutality and barbarism.

Questions addressed in the discussion include the following:

(1) What do you consider to be humankind’s best opportunities for achieving a bright future within the next several decades?
(2) What do you consider to be the greatest obstacles to the realization of such a bright future?
(3) How could such obstacles be overcome?
(4) What actions can most people take to assist in the acceleration of technological progress so as to solve, within the lifetimes of those alive today, many of the major problems currently associated with the human condition?
(5) How can virtual worlds help to improve the physical world?

Franco Cortese is Affiliate Scholar of the Institute for Ethics & Emerging Technologies, Research Scientist at ELPIs Foundation for Indefinite Lifespans, Assistant Editor of Ria University Press, Fellow of the Brighter Brains Institute, Ambassador for The Seasteading Institute, and Chief Operating Officer of the Center for Interdisciplinary Philosophic Studies.

Stolyarov_Cortese_Discussion

The Boon to Longevity Progress Will Be Increased Activism, Advocacy, and Lobbying – Article by Franco Cortese

The Boon to Longevity Progress Will Be Increased Activism, Advocacy, and Lobbying – Article by Franco Cortese

The New Renaissance Hat
Franco Cortese
November 17, 2013
******************************
When asked what the biggest bottleneck for progress in life extension is, most thinkers and researchers say funding. Others say the biggest bottleneck is breakthroughs, while still others say it’s our way of approaching the problem (i.e., seeking healthy life extension, a.k.a. “aging gracefully”, instead of more comprehensive methods of radical life extension). But the majority seem to feel that the largest determining factor impacting how long it takes to achieve indefinite lifespans is adequate funding to plug away at developing and experimentally verifying the various alternative technologies and methodologies that have already been proposed (e.g. Robert Freitas’s Nanomedicine [1], Aubrey de Grey’s Strategies for Engineered Negligible Senescence [2, 3, 4], Michael R. Rose’s Evolutionary Longevity [5, 6]). I claim that Radical Longevity’s biggest bottleneck is not funding, but advocacy, activism and lobbying.
***

This is because the final objective of increased funding for Radical Longevity and Life Extension research can be more effectively and efficiently achieved through public advocacy for Radical Life Extension than it can by direct funding or direct research, per unit of time or effort. Research and development obviously still need to be done, but an increase in researchers needs an increase in funding, and an increase in funding needs an increase in the public perception of indefinite longevity’s feasibility and desirability.

There is no definitive timespan that it will take to achieve radically extended life. How long it takes to achieve Radical Longevity is determined by how hard we work at it and how much effort we put into it. More effort means that it will be achieved sooner. And by and large, an increase in effort can be best achieved by an increase in funding, and an increase in funding can be best achieved by an increase in public advocacy. You will likely accelerate the development of Radically Extended Life, per unit of time or effort, by advocating the desirability, ethicality, and technical feasibility of longer life than you will by doing direct research, or by working towards the objective of directly contributing funds to life-extension projects and research initiatives.

In order to get funding we need to demonstrate with explicit clarity just how much we want it, and that we can do so while minimizing potentially negative societal repercussions like overpopulation. We must do our best to vehemently invalidate the clichés that promulgate the sentiment that life extension is dangerous or unethical. It needn’t be either, and nor is it necessarily likely to be either.

Some think that spending one’s time deliberating the potential issues that could result from greatly increased lifespans and the ways in which we could mitigate or negate them won’t make a difference until greatly increased lifespans are actually achieved. I disagree. While any potentially negative repercussions of life extension (like overpopulation) aren’t going to happen until life extension is achieved, offering solution paradigms and ways in which we could negate or mitigate such negative repercussions decreases the time we have to wait for it by increasing the degree with which the wider public feels it to be desirable, and that it can very well be done safely and ethically. Those who are against radical life extension are against it either because they think it is infeasible (in which case being “against” it may be too strong a descriptor) or because they have qualms relating to its ethicality or its safety. More people openly advocating against it means a higher public perception of its undesirability. Whether indefinite longevity is eventually achieved via private industry or via government-subsidized research initiatives, we need to create the public perception that it is widely desired before either government or industry will take notice.

The sentiment that the best thing we can do is simply live healthily and wait until progress is made seems to be fairly common as well. People have the feeling that researchers are working on it, that it will happen if it can happen, and that waiting until progress is made is the best course to take. Such lethargy will not help Radical Longevity in any way. How long we have to wait for indefinite lifespans is a function of how much effort we put into it. And in this article I argue that how much funding and attention life extension receives is by and large a function of how widespread the public perception of its feasibility and desirability is.

This isn’t simply about our individual desires to live longer. It might be easier to hold the sentiment that we should just wait it out until it happens if we only consider its impact on the scale of our own individual lives. Such a sentiment may also be aided by the view that greatly longer lives would be a mere advantage, nice but unnecessary. I don’t think this is the case. I argue that the technological eradication of involuntary death is a moral imperative if there ever was one. If how long we have to wait until radical longevity is achieved depends on how vehemently we demand it and on how hard we work to create the public perception that longer life is widely longed-for, then to what extent are  100,000 lives lost potentially needlessly every day while we wait on our hands? One million people will die wasteful and involuntary deaths in the next 10 days. 36.5 million people will die this year from age-correlated causes of functional decline. This puts the charges of inethicality in a ghostly new light. If advocating the desirability, feasibility, and blatant ethicality of life extension can hasten its implementation by even a mere 10 days, then one million lives that would have otherwise been lost will have been saved by the efforts of life-extension advocates, researchers, and fiscal supporters. Seen in this way, working toward radical longevity may very well be the most ethical and selfless way you could spend your time, in terms of the number of lives saved and/or the amount of suffering prevented.

One of the most common and easy-to-raise concerns I come across in response to any effort to minimize the suffering of future beings is that there are enough problems to worry about right now. “Shouldn’t we be worrying about lessening starvation in underdeveloped countries first? They’re starving right now. Shouldn’t we be focusing on the problems of today, on things that we can have a direct impact on?” Indeed. 100,000 people will die, potentially needlessly, tomorrow. The massive number of people that suffer involuntary death is a problem of today! Indeed, it may very well be the most pressing problem of today! What other source of contemporary suffering claims so many lives, and occurs on such a massive scale? What other “problem of today” is responsible for the needless and irreversible involuntary death of one hundred thousand lives per day? Certainly not starvation, or war, or cancer, all of which in themselves represent smaller sources of involuntary death. Longevity advocates do what they do for the same reason that people who try to mitigate starvation, war, and cancer do what they do, namely to lessen the amount of involuntary death that occurs.

This is a contemporary problem that we can have a direct impact on. People intuitively assume that we won’t achieve radically extended life until far in the future. This makes them conflate any lives saved by radically extended lifespans with lives yet to come into existence. This makes them see involuntary death as a problem of the future, rather than a problem of today. But more people than I’ve ever known will die tomorrow, from causes that are physically possible to obviate and ameliorate – indeed, from causes that we have potential and conceptual solutions for today.

I have attempted to show in this article that advocating life-extension should be considered as “working toward it” to as great an extent as directly funding it or performing direct research on it is considered as “working toward it”. Advocacy has greater potential to increase life extension’s widespread desirability than direct work or funding does, and increasing both its desirability and the public perception if its desirability has more potential to generate increased funding and research-attention for life-extension than direct funding or research does. Advocacy thus has the potential to contribute to the arrival of life extension and hasten its implementation just as much, if not more so (as I have attempted to argue in this article), than practical research or direct funding does. This should motivate people to help create the momentous momentum we need to really get the ball rolling. To be a longevity advocate is to be a longevity worker! Involuntary death from age-associated, physically-remediable causes is the largest source of death, destruction and suffering today.  Don’t you want to help prevent the most widespread source of death and of suffering in existence today? Don’t you want to help mitigate the most pressing moral concern not only of today, but of the entirety of human history – namely physically remediable involuntary death?

Then advocate the technological eradication of involuntary death. Advocate the technical feasibility, extreme desirability, and blatant ethicality of radically extending life. Death is a cataclysm. We need not sanctify the seemingly inevitable any longer. We need not tell ourselves that death is somehow a good thing, or something we can do nothing about, in order to live with the “fact” of it any longer. Soon it won’t be a fact of life. Soon it will be an artifact of history. Life may not be ipso facto valuable according to all philosophies of value – but life is a necessary precondition for any sort of value whatsoever. Death is dumb, dummy! An incontrovertible waste convertible into nothing! A negative-sum blight! So if you want to contribute to the solution of problems of today, if you want to help your fellow man today, then stand proud and shout loud “Doom to Arbitrary Duty and Death to  Arbitrary Death!” at every crowd cowed by the seeming necessity of death.

***

Franco Cortese is a futurist, author, editor, Affiliate Scholar at the Institute for Ethics & Emerging Technologies, Ambassador at The Seasteading Institute, Affiliate Researcher at ELPIs Foundation for Indefinite Lifespans, Fellow at Brighter Brains Institute, Advisor at the Lifeboat Foundation (Futurists Board Member and Life Extension Scientific Advisory Board Member), Director of the Canadian Longevity Alliance, Activist at the International Longevity Alliance, Canadian Ambassador at Longevity Intelligence Communications, an Administrator at MILE (Movement for Indefinite Life Extension), Columnist at LongeCity, Columnist at H+ Magazine, Executive Director of the Center for Transhumanity, Contributor to the Journal of Geoethical Nanotechnology, India Future Society, Serious Wonder, Immortal Life and The Rational Argumentator. Franco edited Longevitize!: Essays on the Science, Philosophy & Politics of Longevity, a compendium of 150+ essays from over 40 contributing authors.
***
References:
***
[1]. de Grey AD, Ames BN, Andersen JK, Bartke A, Campisi J, HewardCB, McCarter RJ, Stock G (2002). “Time to Talk SENS: Critiquing the Immutability of Human Aging”. Annals of the New York Academy of Sciences 959: 452–62. PMID 11976218.
***

[2]. de Grey, Aubrey (2003). The Mitochondrial Free Radical Theory of Aging. Austin, Texas: Landes Bioscience. ISBN 1-58706-155-4.

[3]. de Grey, Aubrey and Rae, Michael (2007). Ending Aging: The Rejuvenation Breakthroughs that Could Reverse Human Aging in Our Lifetime. St. Martin’s Press.

[4]. Laurence D. Mueller, Casandra L. Rauser and Michael R. Rose (2011). Does Aging Stop? Oxford University Press.

[5]. Garland, T., Jr., and M. R. Rose, eds. (2009). Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments. University of California Press.

Longevity Logistics: We Can Manage the Effects of Overpopulation – Article by Franco Cortese

Longevity Logistics: We Can Manage the Effects of Overpopulation – Article by Franco Cortese

The New Renaissance Hat
Franco Cortese
November 5, 2013
******************************

This is a more popularly-oriented version of a scholarly article in review for the Journal of Evolution and Technology.

By far the most predominant criticism made against indefinite longevity is overpopulation. It is the first “potential problem” that comes to mind. But fortunately it seems that halting the global mortality rate would not cause an immediate drastic increase in global population; in fact, if the mortality rate dropped to zero tomorrow then the doubling rate for the global population would only be increased by a factor of 1.75 [1], which is smaller than the population growth rate during the post-WWII baby-boom.

Population is significantly more determined by birth rate than by death rate, simply because many people have more than one natural child.

This means that we should not see an unsustainable rise in population following even the complete cessation of death globally for a number of generations. We will run into problems 3 or 4 generations hence – but this leaves us with time enough to plan for overpopulation before we’re forced to resort to more drastic solution-paradigms like procreation-bans and space colonization.

Moreover, there are a number of proposed, and in some cases implemented, solutions to existing, contemporary problems that can be utilized for the purpose of minimizing overpopulation’s detrimental effects on living space and non-renewable resource constraints. These contemporary concerns include climate change and dependence on non-renewable energy sources, and they are only increasing in the amount of public attention they are attracting.

While these concerns and their potential solutions were not created by overpopulation or with overpopulation in mind, the potentially negative effects of an increasing global population can be effectively combated all the same using such contemporary methods and technologies.

Thus we can take advantage of the solution-paradigms developed for such contemporary concerns as climate change and dependence on non-renewable resources, and borrow from such movements as the sustainability movement and the seasteading movement, so as to better mitigate and effectively plan for the negative repercussions of a growing global population caused by the emergence of effective longevity technologies.

In a session with The President’s Council on Bioethics (as it was composed during the Bush Administration), S. Jay Olshansky [2] reported calculations he performed indicating that complete cessation of the global morality rate today would lead to less population growth than resulted from the post-WWII “Baby Boom”:

This is an estimate of the birth rate and the death rate in the year 1000, birth rate roughly 70, death rate about 69.5. Remember when there’s a growth rate of 1 percent, very much like your money, a growth rate of 1 percent leads to a doubling time at about 69 to 70 years. It’s the same thing with humans. With a 1 percent growth rate, the population doubles in about 69 years. If you have the growth rate — if you double the growth rate, you have the time it takes for the population to double, so it’s nothing more than the difference between the birth rate and the death rate to generate the growth rate. And here you can see in 1900, the growth rate was about 2 percent, which meant the doubling time was about five years. During the 1950s at the height of the baby boom, the growth rate was about 3 percent, which means the doubling time was about 26 years. In the year 2000, we have birth rates of about 15 per thousand, deaths of about 10 per thousand, low mortality populations, which means the growth rate is about one half of 1 percent, which means it would take about 140 years for the population to double.

Well, if we achieved immortality today, in other words, if the death rate went down to zero, then the growth rate would be defined by the birth rate. The birth rate would be about 15 per thousand, which means the doubling time would be 53 years, and more realistically, if we achieved immortality, we might anticipate a reduction in the birth rate to roughly ten per thousand, in which case the doubling time would be about 80 years. The bottom line is, is that if we achieved immortality today, the growth rate of the population would be less than what we observed during the post-World War II baby boom.

We would eventually run into problems, of course, a century down the road, but just so you know the growth rates would not be nearly what they were in the post-World War II era, even with immortality today.

In other words we will only have increased the doubling-time of the global population by a factor of 1.75 if we achieved indefinite longevity today (e.g., a doubling time of 140 years in 2000 compared to a doubling time of 80 years). This means that we will have two to four generations worth of time to consider possible solutions to growing population before we are faced with the “hard choice” of (1) finding new space and resources or else (2) limiting or regulating the global birthrate.

An alternate study on the demographic consequences of life extension concluded that “population changes are surprisingly slow in their response to a dramatic life extension”. The study applied “the cohort-component method of population projections to 2005 Swedish population for several scenarios of life extension and a fertility schedule observed in 2005,” concluding that “even for a very long 100-year projection horizon, with the most radical life extension scenario (assuming no aging at all after age 60), the total population increases by 22% only (from 9.1 to 11.0 million)” and that “even in the case of the most radical life extension scenario, population growth could be relatively slow and may not necessarily lead to overpopulation.” [2]. The total population increase due to the complete negation of mortality given by this study is significantly lower than the figure calculated by Olshansky.

Finding innovative solutions to new and old problems is what humanity does. We have a variety of possible viable options to increase the resources and living space available to humanity already. Moreover, there are several other contemporary concerns that are invoking the development of technological and methodological solutions that can be applied to our own concerns regarding the effects of overpopulation. Surely we can conceive of optimal solutions to these problems (and the more pressing a given problem is, the more funding it receives and the faster the solution to it is accomplished) – and take advantage of the growing methodological and technical infrastructure being developed for related and convergent problems – within the time it will take to feel overpopulation’s effect on living space and resources.

We could, for instance, colonize the oceans [3, 4, 5], drawing from the engineering, construction techniques used to build, maintain, and safely inhabit contemporary VLFSs (Very Large Floating Structures). 75% of the Earth’s surface area is, after all, water. This would increase our potential living space 3-fold – and I say “potential” because we surely don’t currently maximize living space on the 25% of the Earth’s surface occupied by land. Furthermore, humanity has as yet barely ventured beyond the surface of the earth – which is a sphere after all. There is nothing to prevent society building higher and building deeper. Indeed, with contemporary and projected advances in materials science and structural engineering, there is no theoretical limit to the height of structures we can safely build – the space elevator being a case in point. And while there will indeed be a maximum size wherein building higher becomes economically prohibitive (a limit determined to a large extent by the materials used), contemporary megastructures [6] indicate that very large structures can be built safety and cost-effectively. Underground living [7, 8, 9, 10] is another potential solution-paradigm as well; underground structures require less energy, are protected from weathering effects and changing temperatures to a much greater extent than structures exposed to the elements, and are less susceptible to damage from natural disasters. Furthermore, there are a number of underground cities in existence today [11], with existing techniques and technologies used to better facilitate contemporary underground living, which we can take advantage of.

In fact, the problem of limited living space is a contemporary problem for certain nations like Japan, and active projects to combat this growing problem have already been undertaken in many cases. This means that there will be an existing host of solutions, with their own technological and methodological infrastructures, which we can benefit from and take advantage of when the problematizing effects of growing global population become immediate. Not only can we take advantage of the existing engineering methodologies developed for use in the construction of VLFSs, but we can also take advantage of the growing body of knowledge pertaining to megastructural engineering and even existing proposals for floating cities [12, 13, 14, 15, 17, 18]. Another possible solution is artificial islands [19].

Furthermore, in recent years the topic of Very Large Floating Structures [21, 22] has experienced a surge of renewed interest occurring in tandem with the increasing interest in seasteading [23, 24], – that is, the creation of very-large-floating-structures for reasons of political sovereignty as well as to allow corporations to get around the laws of a given nation by occupying an area outside of exclusive economic zones. This renewed interest can only increase the amount of attention and funding these concepts receive, in turn increasing the viability of VLFS designs and their underlying structural-engineering and energy-production concerns.

Another contemporary movement that will prove advantageous for our own concerns with the effects of overpopulation on living space, working space, and resource space is the growing green movement and sustainability movement. The problem of resource scarcity is already upon us in many areas, and there exists contemporary motivation for finding more resource-efficient ways of making energy and producing goods, and for lessening our dependency on non-renewable energy sources. Climate change has only become an increasingly predominant concern in international politics, and many incentives exist to lessen our dependence on non-renewable energy sources as well as to lessen the environmental impact of contemporary civilization, which is itself another oft-touted problematic concern possibly resulting from overpopulation. Developments in these areas are only set to continue, for reasons wholly unrelated to the effects of overpopulation, and when those effects come to the fore we will have a collection of existing methodologies that can then be harnessed to lessen the impact of overpopulation on living space and resource scarcity.

The predominance of these problems, as well as the amount of attention and funding they are expected to receive (and thus the viability of their potential solutions), will only increase as we move forward into the future. The solutions we have to the potential problems of overpopulation – namely resource scarcity and lack of living space – will not only increase as the effects of overpopulation get closer, but the technological and methodological infrastructures underlying those solutions will also become more tried, tested, and robust, fueled by contemporary concerns over decreasing living space, climate-change and resource scarcity.

While space colonization is the most frequently proffered technological solution to the possibility of future overpopulation, I think we will turn to various Earth-bound solutions to increasing humanity’s available living space, as well as the space available for agricultural labs, that is the manufacture of food-stuffs, or indoor farming systems [25, 26, 28], before colonizing the cosmos becomes an economically optimal option. I think these sorts of solutions will be employed long before humanity is forced to either regulate the birthrate or move into the cosmos.

Moreover, people who wish to have children will have incentive to support politicians running on policies promoting new solutions to decreasing living space. Consider the number of U.S. taxpayer dollars spent during the Space Race, with no immediate material or scientific benefit (other than to prove it could be done, as well as to maintain rough militaristic equality with the USSR to some extent, as the state of rocket technology was indicative of the state of ballistic technologies like missiles). If humanity is forced to choose between having children and receiving the medical treatments that will keep them from dying, surely people will be motivated to fund initiatives and projects aimed at solving the problems of decreasing living space and increasing resource constraints due to a growing global population.

It is important to remember that the largest increase in life expectancy we have experienced historically was followed by a drastic decrease in birthrate over the next few generations thereafter. Before the Industrial Revolution, English women had on average 6 children. In 2000 the average was less than 2.

Figure 1: Fertility Rates in England, 1540-2000

Note: GRR = Gross Reproduction Rate, NRR = Net Reproduction Rate
Source: Wrigley et al. (1997) p. 614. Office of National Statistics, United Kingdom.

The drop in birthrate following the industrial revolution has several causes. Chief among them is the fact that children were considered to some extent as assets, helping with maintaining the family livelihood, often by doing agricultural work on a family farm or helping with household chores (which were much more extensive then). Another large determining factor is a high rate of child mortality; thus families would have multiple children in anticipation of losing some to death. But with a rise in living conditions, the child mortality rate dropped drastically – and as a result we stopped having more kids in anticipation of some of them dying. Moreover, we started treating children less as assets and more as people to nurture and raise for their own sake. Longer lives, and less susceptibility to death in general, appears to have made us better parents.

Thus it is not only possible but probable that we will see a similar drop in the birthrate as a consequence of a significant future increase in average lifespan, with people having children much later in life, when they are more financially stable and when they have done all the commitment-free things they’ve always wanted to do. Without a looming limit on one’s available reproductive lifespan, there will be no pressing motivation to have children “before it’s too late” – and this alone could very well facilitate an unprecedented decrease in the Total Fertility Rate (TFR) of the global population.

Evidence indicates that the drop in birth rate was neither limited to England, nor an isolated result of the Industrial Revolution. A net drop in the TFR seems to be a longer-term trend concurrent across the globe. It is likely that the drop in the TFR is due to the same factors as the drop in birth rate following the Industrial Revolution – increasing life expectancy and continually improving living conditions allow people to have children without expecting a portion of them to be lost to death, to have them for the sake of having children rather than as assets to aid in maintaining the family livelihood, and to have children later in life due to the increase in one’s reproductive lifespan that comes with increasing life expectancy. The fact that the drop in TFR is not an isolated historical event is advantageous because the global population is affected by birth rate much more than by the mortality rate. Hence we may see a continuing decrease in the TFR occur in tandem with increasing life expectancy, leveling out the imbalance created by a mortality rate of zero by a larger than has been heretofore anticipated. (Source: U.S. Central Intelligence Agency, World Factbook.)

Let us suppose, for a moment, the worst: that indefinite longevity is achieved and we completely ignore (i.e., fail to plan for) overpopulation until its effects start becoming readily apparent. Even in this seeming worst-case scenario, overpopulation is not likely to result in any great tragedies. In such a case we would be forced to limit the global birthrate until we are able to implement the solutions that would allow us to sustainably procreate again. If people have a strong enough desire to continue having children, then they will express their demand and politicians will consequently base their policies upon deliberative initiatives to increase available living and agricultural space – and get elected if the desire to freely procreate is strong and widespread enough. Failing to plan for overpopulation will simply be a wake-up call, letting us know that we should have been planning for its effects from the beginning, and that we had better start planning for them now if we want to continue to freely procreate.

Thus while overpopulation is the most prominent and most credible criticism against continually increasing lifespans, and the one that needs to be planned for the most (because it will eventually happen, but it will lead to sustainability, resource, and living-space problems only if we do nothing about it), it is in no way insoluble, nor particularly pressing in terms of the time available to plan and implement solutions to shrinking living space and resource space (i.e., the space occupied by resources such as food, energy production, workplaces, etc.). We have a host of potential solutions today, ones we can use to increase available living space without regulating the global birthrate, and decades following the achievement of indefinite lifespans to consider the advantages and disadvantages of the various possible solutions, to develop them and to implement them.

So then: where to from here? Overpopulation is still the most prominent criticism raised against indefinite longevity, and if combated, the result could be an increase in public support for the Longevity movement. You might think that the widespread concern with overpopulation due to increasing longevity won’t really matter, if they turn out to be wrong, and overpopulation isn’t so insoluble a problem as one is inclined to first presume. But this misses a crucial point: that the time it takes to achieve longevity is determined by and large by how strongly and in how widespread a manner society and the members constituting it desire and demand it. If we can convince people today that overpopulation isn’t an insoluble problem, then continually increasing longevity might happen much sooner than otherwise. At the cost of 100,000 deaths due to age-correlated causes per day, I think hastening the arrival of indefinite longevity therapies by even a modest amount is somewhat imperative. Hastening its arrival by one month will save 3 million lives, and achieving it one year sooner than otherwise will save an astounding 36.5 Million real, human lives.

Thus, we should work toward putting more concrete numbers to these estimates. How much more living space can be feasibly created by colonizing the oceans? How deep can we really dig, build and live? How high can we safely build? Is there a threshold height or depth where building higher or deeper becomes too economically prohibitive to be worth the added living, working or resource space? What are the parameters (e.g., material strength/cost ratio, specific structural design) determining such a threshold?

First, we need to collect and analyze the feasibility studies that have already been undertaken on floating cities, artificial islands, VLFSs and the new solution-paradigms that are emerging to combat the contemporary concerns of sustainability and resource scarcity. In short, we need to compile data from the feasibility studies that have already been done, and the projects already implemented. Then we need to plan and commission further feasibility studies, undertaken by engineers and geologists, to build upon the work already accomplished in feasibility studies pertaining to existing designs for floating cities and other Very Large Floating Structures. We need to put some numbers to the cost the additional space for food, resources, work and living necessitated by widely available life-extension therapies. We need to do some hard calculations to show that the effects of overpopulation are problems that can be solved using existing megascale engineering and construction techniques and materials, safely and economically. We need to show the world that it has more space than it ever thought it had, and that such solution-paradigms as cosmic colonization and procreative regulation are neither the only ones, nor necessarily the most optimal ones. We need, in short, to show them that, in this case, where there’s a will there’s a way, and that the weight of waiting is too high a price to pay.

Franco Cortese is a futurist, author, editor, Affiliate Scholar at the Institute for Ethics & Emerging Technologies, Ambassador at The Seasteading Institute, Affiliate Researcher at ELPIs Foundation for Indefinite Lifespans, Fellow at Brighter Brains Institute, Advisor at the Lifeboat Foundation (Futurists Board Member and Life Extension Scientific Advisory Board Member), Director of the Canadian Longevity Alliance, Activist at the International Longevity Alliance, Canadian Ambassador at Longevity Intelligence Communications, an Administrator at MILE (Movement for Indefinite Life Extension), Columnist at LongeCity, Columnist at H+ Magazine, Executive Director of the Center for Transhumanity, Contributor to the Journal of Geoethical Nanotechnology, India Future Society, Serious Wonder, Immortal Life and The Rational Argumentator. Franco edited Longevitize!: Essays on the Science, Philosophy & Politics of Longevity, a compendium of 150+ essays from over 40 contributing authors.

References:

  1. Presidents Council for Bioethics: Transcripts (December 12, 2002): Session 2: Duration of Life: Is There a Biological Warranty Period? 01.
  2. L. A. Gavrilov and N.S. Gavrilova. “Demographic Consequences of Defeating Aging”. Rejuvenation Research. 2010 April; 13(2-3): 329–334.
  3. Ibid.
  4. McCullagh, Declan. “Seasteaders” Take First Step Toward Colonizing The Oceans.” CBS News, October 9, 2009. 02
  5. Pasternack, Alex. “Bioengineer aspires to colonize the sea.” CNN, January 12, 2011. 03
  6. Banham, Reyner. Megastructure: urban futures of the recent past. London: Thames and Hudson, 1976.
  7. Tsuchiyama, Ray. “Ocean Colonies as Next Frontier.” Forbes, April 24, 2011. Accessed August 1, 2013. 04
  8. “Inside Underground Cities.” Before Its News. 2013 March. 05
  9. South, D. B., and Freda Parker. “Underground Homes – Good or Bad?” Monolithic, January 22, 2009. 06.
  10. Good Earth Plants & Greenscaped Buildings. “Underground Living.” Last modified May 6, 2013. 07.
  11. Kelly, J. “10 Amazing Underground Cities”. Listverse.com. January 22, 2013. Accessed August 1, 2013. 08
  12. Gammon, Katharine. “Building Artificial Islands That Rise With Sea.” PopSci, June 8, 2012. 09
  13. Cottrell, Claire. “A Survey of Futuristic Floating Cities.” FlavorWire, November 2, 2012. 10
  14. “Cities on the Ocean.” Technology Quarterly – The Economist. Q4 2011.
  15. Bonsor, Kevin. “How the Floating Cities Will Work.” HowStuffWorks. n.d. 11.
  16. DigInfo TV. “GREEN FLOAT – a Floating City in the Sky.” Accessed August 6, 2013. 12.
  17. National Geographic. “Pictures: Floating Cities of the Future.” Accessed August 6, 2013. 13.
  18. Emerging Technology News. “Self-Sufficient Floating Cities Planned for 2025: Japan.” Accessed August 6, 2013. 14.
  19. “An artificial island in Hambantota.” News.LK, August 2, 2013. 15
  20. Goodier, Rob. “The World’s 18 Strangest Man Made Islands.” Popular Mechanics, n.d. 16
  21. E. Watanabe, C.M. Wang, T. Utsunomiya and T. Moan. “Very Large Floating Structures: Applications, Analysis and Design”. CORE Report No. 2004-02. Centre for Offshore Research and Engineering National University of Singapore. 17
  22. C.M. Wang, and Z. Tay. Very Large Floating Structures: Applications, Research and Development. In The Proceedings of the Twelfth East Asia-Pacific Conference on Structural Engineering and Construction — EASEC12. Edited by LAM Heung Fai. Singapore: Department of Civil Engineering, National University of Singapore Kent Ridge, 2011. 18
  23. World Architecture News. “Seasteading, United States.” Accessed August 6, 2013. 19
  24. The Seasteading Institute. The Seasteading Institute Annual Report 2008. Rep. n.p., n.d.
  25. Nagy, Attila. “14 High-Tech Farms Where Veggies Grow Indoors.” Gizmodo, June 17. 20.
  26. Meinhold, Bridgette. “Indoor Vertical Farm ‘Pinkhouses’ Grow Plants Faster With Less Energy.” Inhabitat. Last modified May 23, 2013. 21.
  27. TerraSphere. “Urban farming 2.0: No soil, no sun.” Accessed August 1, 2013. 22.
  28. The Vertical Farm Project – Agriculture for the 21st Century and Beyond. “Vertical Farm Designs.” Accessed August 6, 2013. 23

 

Three Specters of Immortality: A Talk from the Radical Life-Extension Conference in Washington D.C. – Article by Franco Cortese

Three Specters of Immortality: A Talk from the Radical Life-Extension Conference in Washington D.C. – Article by Franco Cortese

The New Renaissance Hat
Franco Cortese
October 20, 2013
******************************

Author’s Note: The following is a transcript of a talk given at the recent Radical Life Extension Conference held in the U.S. Capitol on September 22,2013. Talks were also given by Antonei B. Csoka, Gabriel Rothblatt, Tom Mooney, Mark Waser, Gray Scott, Josh Mitteldorf, Maitreya One, Jennifer ‘Dotora’ Huse and Apneet Jolly. A special thanks to David Pizer for making this article available for distribution at the upcoming Society for Venturism 2013 Cryonics Conference in Laughlin, Nevada, on October 25-27th.

Introduction

I would like to address what I consider to be three common criticisms against the desirability and ethicality of life-extension I come across all too often – three specters of immortality, if you will. These will be (1) overpopulation (the criticism that widely available life-extension therapies will cause unmanageable overpopulation), (2) naturality (the criticism that life extension is wrong because it is unnatural), and (3) selfishness (the criticism that life-extension researchers, activists, and supporters are motivated by a desire to increase their own, personal lifespans rather than by a desire to decrease involuntary suffering in the world at large).

But first I would like to comment on why this would be important. I would consider two of the three critiques – namely the naturality critique and the selfishness critique – to be largely unfounded and vacuous; I don’t think they will be real worries when comprehensive life-extension therapies arrive. I think that the overpopulation critique does have some weight to it; we do in fact need to plan for and manage the effects of a growing population. However, the overpopulation critique is wrong in assuming that such affects will be unmanageable.

So if at least 2 of these 3 critiques are largely unfounded, then what’s the worry? Won’t they simply disappear when life extension is achieved, if they are really so baseless? Well, yes, but the possibility of their turning out to be right at the end of the day is not what makes them worrying.

What makes them worrying is the fact that they deter widespread support of life extension from the general public, because they stop many people from seeing the advantage and desirability of life extension today. A somewhat common, though thankfully not predominant, attitude I find from some longevity supporters is that work is being done, progress is being made, and that the best course of action for those who want to be around to benefit from the advances in medicine already on the developmental horizon is simply to live as healthily as we can today while waiting for tomorrow’s promise. I don’t think this attitude necessarily deters progress in the life-extension field, but I certainly don’t think it helps it very much either. I think such people are under the pretense that it will take as long as it needs to, and that there is nothing the average person can really do to speed things up and hasten progress in the field. Quite to the contrary, I think every man and woman in this room can play as central a role in hastening progress in the field of life extension as researchers and scientists can.

This is largely due to the fact that just what is considered worthy of scientific study is to a very large extent out of the hands of the average scientist. The large majority of working-day scientists don’t have as much creative license and choice over what they research as we would like to think they do. Scientists have to make their studies conform to the kinds of research that are getting funded. In order to get funding, more often than not they have to do research on what the scientific community considers important or interesting, rather than on what they personally might find the most important or interesting. And what the scientific community considers important and worthy of research is, by and large, determined by what the wider public considers important.

Thus if we want to increase the funding available to academic projects pertaining to life extension, we should be increasing public support for it first and foremost. We should be catalyzing popular interest in and knowledge of life extension. Strangely enough, the objective of increased funding can be more successfully and efficiently achieved, per unit of time or effort, by increasing public support and demand via activism, advocacy, and lobbying, rather than by, say, direct funding, period.

Thus, even if most of these three criticisms, these specters of immortality, are to some extent baseless, refuting them is still important insofar as it increases public support for life extension, thereby hastening progress in the field. We need massive amounts of people to wake up and very explicitly communicate their desire for increased funding in biomedical gerontology, a.k.a. life extension. I think that this is what will catalyze progress in the field – very clear widespread demand for increased funding and attention for life extension.

This is something I think each and every man and woman here today can do – that is, become a life-extension activist and advocate. It is not only one of the easiest ways in which you can contribute to the movement – it may very well be the most important and effective ways that you can contribute to the movement as well. Send an email to the International Longevity Alliance (info@longevityalliance.org), an organization dedicated to social advocacy of life extension, which is compiling a list of life-extension advocates and networking them together. Arrange and organize your own local life-extension rally or demonstration, like the one held last year in Brussels. This could be as easy as holding up signs supporting scientific research into aging in the most traffic-dense location in your local area, recording it, and posting it on YouTube.

And so, without further ado, I’d like to move on to the three specters of immortality.

1. The Unmanageable-Overpopulation Critique

Firstly, I’d like to turn a critique of the possible undesirable societal and demographic repercussions of life extension. The most prominent among these kinds of critiques is that of overpopulation – namely that the widespread availability of life-extension therapies will cause unmanageable overpopulation and a rapid depletion of our scarce resources.

I think this critique, out of those three critiques addressed here, is really the only one that is a real worry. That is because potential negative societal repercussions of life extension are a real possibility, and must be appropriately addressed if they are to be avoided or mitigated. And don’t get me wrong – they are manageable problems that can be handled if we make sure to plan for them sufficiently, and allocate enough attention to them before their effects are upon us.

According to some studies, such as one performed by S. Jay Olshanksy, a member of the board of directors for the American Federation of Aging Research (and the foremost advocate and promulgator of the Longevity Dividend), if the mortality rate dropped to zero tomorrow – that is, if everyone in the world received life-extension therapies comprehensive enough to extend their lives indefinitely – we would experience a rise in population less than the growth in population we experienced following the Post-World-War-II baby-boom. Global society has experienced dramatic increases in population growth before – and when that happened we extended and added to our infrastructure accordingly in order to accommodate them. When significant increases in life extension begin to happen, I expect that we will do the same. But we must make sure to plan ahead. Overpopulation will be an insoluble problem only if we ignore it until its perceptible effects are upon us.

Luckily, there are a number of existing solution-paradigms to other, somewhat related problems and concerns that can be leveraged to help mitigate the scarcitizing effects of overpopulation on resources and living-space.

Contemporary concerns over the depletion of non-renewable resources, such as but not limited to climate change, can be leveraged to help lessen the detrimental effect overpopulation might have on non-renewable resources.

Another contemporary solution paradigm we can leverage to help mitigate the detrimental effects of overpopulation on living space is seasteading. This is the notion of creating permanent dwellings and structures at sea, essentially floating cities, outside of the territory of governments – more often than not to get around legal complications relating to whatever the prospective seasteaders wish to do. This movement is already bringing about designs and feasibility studies relating to the safe construction of very large floating cities.

The most common solution-paradigms proposed to combat the problems of resources and living space are space colonization and regulating how many children people can have. I think that long before we turn to these options, we will begin to better maximize the existing living space we have. 75% of the earth’s surface area is water. I think that we will colonize the oceans long before space colonization becomes a more economically optimal option. Further, we currently don’t use the living space we have very well. We live on the surface of a sphere, after all. There is nothing in principle preventing us from building taller and building deeper. We can take from existing proposals and feasibility studies pertaining to megastructures – that is, very large man-made structures – to build much bigger than we currently do.

Another existing field that can help lessen the potential resource-depleting effects of a growing global population is agricultural labs, indoor farming systems, and vertical farms. Such systems are in use today for large-scale food production. This would allow us to take all the space we currently have devoted to agriculture (roughly 40% of earth’s total land-area according to some estimates – see here and here) and move it underground or indoors.

Thus overpopulation is a real worry, but we have the potential solutions to its problematic effects today. We can leverage several existing solution-paradigms proposed to combat several contemporary problems and concerns in order to manage the scarcitizing effects of overpopulation on resources and living space.

2. The Naturality Critique

I’d like to turn to the Naturality criticism now – the criticism that life-extension is unnatural, dehumanizing and an affront to our human dignity.  – This could not be farther from the truth. The stanch revulsion we have of death is right; appropriate; a perfectly natural response.

Besides which, “naturality,” insofar as it pertains to humans, is an illegitimate notion to begin with. For us human beings, naturality is unnatural. It is we who have cast off animality in the name of mind, we who have ripped dead matter asunder to infuse it with the works of our mind – we who have crafted clothes, codes, cities, symbols, and culture. Since the very inception of human civilization, we have very thoroughly ceased to be natural, and to such an extent that unnaturality has become our first nature.

Firstly, one thing that I think undercuts the critique of naturality rather well is the known existence of biologically immortal organisms. There are in fact known organisms where the statistical probability of mortality does not increase with age. Meaning that if one kept these organisms healthily fed and in a good environment for them, then they simply shouldn’t die. Not only are there proofs of concept for biological immortality – but it can be found in nature unmodified by man.

Hydras, small freshwater organisms, do not undergo cellular senescence and are able to maintain their telomere lengths throughout continued cell division. The jellyfish Turritopsis Nutricula can, through a process called cellular transdifferentiation, revert back to the polyp stage (an earlier stage in its developmental cycle) a potentially indefinite number of times. Planarian Flatworms also appear to be biologically immortal, and can maintain their telomere lengths through a large population of highly proliferative adult stem cells. And if you can believe it, an organism as commonplace as the lobster also appears to be biologically immortal. Older lobsters are more fertile than young lobsters, and they don’t appear to weaken or slow down with age.

There is then such a thing as biological immortality. In biology it’s defined as a stable or decreasing rate or mortality from cellular senescence as a function of chronological age. Meaning that barring such accidents as being eaten by prey, such organisms should continue to live indefinitely.

I also think that this is great proof of concept for people who automatically associate the magnitude of the endeavor with its complexity or difficulty, and assume that achieving biological immortality is technically infeasible simply due to the sheer profundity of the objective. But in regards to naturality, I think the existence of such biologically immortal organisms goes to show that there is nothing necessarily unnatural about biological immortality – because it has already been achieved by blind evolution in various naturally-occurring biological organisms.

Secondly, I think that the long history of seminal thinkers who have contemplated the notion of human biological immortality, the historical antecedents of the contemporary life-extension movement, help to combat the naturality criticism as well. Believe it or not, people have been speculating about the scientific abolition of involuntary death for hundreds of years at least.

As early as 1795, nearly 220 years ago, Marquis de Condorcet wrote

Would it be absurd now to suppose that the improvement of the human race should be regarded as capable of unlimited progress? That a time will come when death would result only from extraordinary accidents or the more and more gradual wearing out of vitality, and that, finally, the duration of the average interval between birth and wearing out has itself no specific limit whatsoever? No doubt man will not become immortal, but cannot the span constantly increase between the moment he begins to live and the time when naturally, without illness or accident, he finds life a burden?”

Here we see one of the fathers of the enlightenment tradition speculating on whether it is really that absurd to contemplate the notion of a continually-increasing human lifespan.

In 1773, 240 years ago, Benjamin Franklin wrote in a letter to Jacques Duborg, first praising the sagacity and humanity demonstrated by his attempt to bring animals back from the dead, and then describing what can only be a harkening of cryonics and suspended animation, where he wishes that there were a way for him to be revived a century hence, and witness the progress in science that had been made since the time of his death.

“Your observations on the causes of death, and the experiments which you propose for recalling to life those who appear to be killed by lightning, demonstrate equally your sagacity and your humanity. It appears that the doctrine of life and death in general is yet but little understood…

I wish it were possible… to invent a method of embalming drowned persons, in such a manner that they might be recalled to life at any period, however distant; for having a very ardent desire to see and observe the state of America a hundred years hence, I should prefer to an ordinary death, being immersed with a few friends in a cask of Madeira, until that time, then to be recalled to life by the solar warmth of my dear country! But… in all probability, we live in a century too little advanced, and too near the infancy of science, to see such an art brought in our time to its perfection…

Thus the notion of human biological immortality through science and medicine is not as new as most of us are probably quick to presume. Men of stature and intellect, respected and admired historical figures, have been contemplating the prospect for hundreds of years at least.

Thirdly, I think that religion itself exemplifies our desire for indefinite lifespans. This may seem counter-intuitive considering that many criticisms of life extension come from underlying religious arguments and worldviews – for instance that we shouldn’t be playing god, or messing with the way god created us. But the fact is that most religions have a conception of the afterlife – i.e., of eternal life following the physical death of the body. The fact that belief in an afterlife is a feature shared by almost all historical religions, that belief in an afterlife was conceived in a whole host of cultures independent of one another, shows that indefinite lifespans is one of humanity’s most deep-rooted and common longings and desires – indeed, one so deep-rooted that it transcends cultural distance and deep historical time.

3. The Selfishness Critique

Now I’d like to turn to the third specter of immortality – the criticism of selfishness. Whereas the first specter of immortality was a critique of the ethicality of life extension, this second specter is more a moralistic critique of the worthiness of actually spending one’s time trying to further progress in the field today.

The view that life-extension researchers, activists and supporters are arrogant for thinking that we somehow deserve to live longer than those that came before us – as though we were trying to increase public support for and interest in life extension merely for the sake of continuing our own lives. This, too, is, I think, a rather baseless criticism. Every life-extension researcher, activist, scholar and supporter I know does it not solely for the sake of their own lives but for the sake of the 100,000 people that die every day due to age-correlated causes. That’s right, ladies and gentlemen, 100,000 people will die from aging today, lost forever to causes that are in principle preventable and ultimately unnecessary. There are roughly 86,000 seconds in a day. That works out to a little more than one death per second. That’s about equal to the entire population of Washington, DC, dying every week, 3 million preventable deaths per month, and 36.5 million deaths per year. A group larger than the entire population of Canada will die from aging this year – and the fact that it sickens so few of us is incredibly sickening to me. This is an untenable situation for a civilization as capable as ours – we who have reshaped the world over, we who have gone to the moon, we who have manipulated atoms despite out fat monkey fingers. Humanity is an incredibly powerful and unprecedented phenomenon, and to say that we simply cannot do anything about death is to laugh in the face of history to some extent. Recall that very learned and esteemed men once said that heavier-than-air flying machines – and a great many other things we take for granted today – are impossible.

We cringe and cry when we hear of acts of genocide or horrible accidents killing thousands. But this occurs every day, on the toll of 100,000 deaths per day, right under our noses.

Doing something about this daily cataclysm is what drives my own work, and the work of most every life-extension supporter I know. The life-extension movement is about decreasing the amount of involuntary suffering in the world, and only lastly about our own, personal longevity, if at all. The eradication of involuntary death via science and medicine is nothing less than the humanitarian imperative of our times!

And again, this is something that I think each and every one of you can take part in. Become a life-extension supporter, advocate and activist. It may be not only the easiest way that you can contribute to hastening progress in the field of life extension, but the most effective way as well. Thank you.

###

Franco Cortese is a futurist, author, editor, Affiliate Scholar at the Institute for Ethics & Emerging Technologies, Ambassador at The Seasteading Institute, Affiliate Researcher at ELPIs Foundation for Indefinite Lifespans, Fellow at Brighter Brains Institute, Advisor at the Lifeboat Foundation (Futurists Board Member and Life Extension Scientific Advisory Board Member), Director of the Canadian Longevity Alliance, Activist at the International Longevity Alliance, Canadian Ambassador at Longevity Intelligence Communications, an Administrator at MILE (Movement for Indefinite Life Extension), Columnist at LongeCity, Columnist at H+ Magazine, Executive Director of the Center for Transhumanity, Contributor to the Journal of Geoethical Nanotechnology, India Future Society, Serious Wonder, Immortal Life and The Rational Argumentator. Franco edited Longevitize!: Essays on the Science, Philosophy & Politics of Longevity, a compendium of 150+ essays from over 40 contributing authors.

Longevitize!: The Master Compendium for the Life-Extension Movement – Post by G. Stolyarov II

Longevitize!: The Master Compendium for the Life-Extension Movement – Post by G. Stolyarov II

The New Renaissance Hat
G. Stolyarov II
September 7, 2013
******************************

longevitize2013_med

Longevitize!: Essays on the Science, Philosophy & Politics of Longevity is a new and (literally) vital compilation, edited by Franco Cortese, which assembles perhaps the widest array of resources on radical life extension in one location. You can read a detailed description of the book here. Cortese’s ambitious projects have breathed new life into the transhumanist and immortalist movements, and Longevitize promises to be perhaps his most influential contribution to date, illustrating a thorough grasp of the current state of the efforts to defeat senescence and enable humankind to transcend its primordial limitations.

In addition to 164 articles representing diverse perspectives about the scientific, philosophical, and political aspects and implications of indefinite life extension, this compendium includes an immensity of links to external resources, including books, articles, and videos. I am proud that my Resources on Indefinite Life Extension (RILE) page formed the crux of the book’s Appendix II. Longevitize permits the reader to delve as deeply as can be desired into studying the feasibility, desirability, and possibilities for implementation of the defeat of senescence and involuntary death.

I am proud to have contributed 27 essays to this anthology, spanning 9 years of my thinking and writing on the prospect of indefinite longevity. In addition, the excellent cover was designed by my wife Wendy Stolyarov, incorporating Maxim Vorobiev’s 1842 painting, “Oak fractured by a lightning bolt. Allegory on wife’s death.” Death destroys our irreplaceable individual universes much like that lightning destroyed the tree. It is time to put an end to this travesty, and Longevitize offers an amazing toolkit and intellectual foundation for doing so. Buy this book, read it, and use it in your further intellectual explorations – including your writing, research, argumentation, and activism.

Right now, Longevitize! is available as an e-book for $9.99, both in PDF and MOBI formats, from Amazon. A hard-copy version is currently being prepared.

Combatting the “Longer Life Will Slow Progress” Criticism – Article by Franco Cortese

Combatting the “Longer Life Will Slow Progress” Criticism – Article by Franco Cortese

The New Renaissance Hat
Franco Cortese
September 2, 2013
******************************

We are all still children. As far as the Centenarian is concerned, the only people to have ever lived have been children – and we have all died before our coming of age.

What if humans only lived to age 20? Consider how much less it would be possible to know, to experience, and to do. Most people would agree that a maximum lifespan of 20 years is extremely circumscribing and limiting – a travesty. However, it is only because we ourselves have lived past such an age that we feel intuitively as though a maximum lifespan of 20 years would be a worse state of affairs than a maximum lifespan of 100. And it is only because we ourselves have not lived past the age of 100 that we fail to have similar feelings regarding death at the age of 100. This doesn’t seem like such a tragedy to us – but it is a tragedy, and arguably one as extensive as death at age 20.

Another reason informing our concern with death at age 20 and our relative ease with death at 100 is the notion of living long enough to do enough. Death at age 20 for the most part seems to preclude such experiences as parenthood, to birth a child and watch him grow into personhood, whereas a 100-year-old will have had enough time to have children, to watch them grow, to work and to enjoy the fruits of his or her labor through leisure in retirement. Our ignorance regarding the real scope of possibility, of possible experience and possible modes of existence, also informs our relative unconcern with death at age 100. We feel that there is a limited number of things for one to do in life, or at least things that are qualitatively unique enough to be considered as being truly distinguishable from the rest.

But we couldn’t be more wrong. It’s hard to step outside culture sometimes, and easy to naively look upon a foreign culture as embodying but a very limited number of archetypes and stereotypical caricatures of their true depth and diversity. There are more contemporary cultural traditions and conditions that can be practiced and experienced than there are years to actually do so. Likewise, there is more history to learn about than time available. The current breadth and depth of the world and its past are far too gargantuan to be encompassed by a mere 100 years. If you really think that there are only so many things that can be done in a lifetime, you simply haven’t lived long enough or broadly enough. There is more to the wide whorl of the world than the confines and extents of our own particular cultural narrative and native milieu.

More than this, the startling diversity of the world and stark heterogeneity of history are only set to continue their upward growth into spaces unknown as we move into the plethora of futures before us. More information is being produced than can be kept up with. Culture has always been changing, but today the pace of that change is swifter than ever before. The thought that boredom would ever be an issue to longer-living people is simply laughable. Not only does the world currently contain more than it is possible to know in a single century, but it is accumulating ever more depth and diversity every day, and at an accelerating pace. You couldn’t catch up with history in the first place, and you’re sure to gain more ground to cover than you can possibly encompass, faster than you can get a hold of it, as life expectancy experiences further increases.

Another condition informing our concern with death at 20 and our relative unconcern with death at 100 is the decline of function as we age. Bodily suffering and functional decay increase as one grows with age, and often we look upon the elderly as beings more defined by their encumbrance, by what they have lost, than by what they still possess. What will life be like, we wonder, when bodily motion becomes a battle, and when the simple experience of motion in an embodied world is complimented at every turn and twist by heat, friction, and pain, when living as we once did when young becomes a labor, and leisure is really just that? Or perhaps worse, when our minds begin to fall out from under us, to fail, as we are left to look on in horror from the inside-out, looking in? Lucky for us, we’re wrong; and even if we weren’t, we are still lucky that it is a transient tragedy, a temporary and ultimately remediable one.

How Life Expectancy Soared Since 1841

These men and women are more than the sum of what they have lost. They are living, breathing, thinking and valuing beings. They are! It’s as simple and stunning as that: they exist! To think that they might be better off, happier, in the rest of death and quiet of last breath – to think that they are beings defined most fundamentally by suffering, and by a comparison of what they no longer are, is not only wrong but perverse. They are living, and life so long as it’s lived should never be defined by suffering, by a lack or comparison of what it isn’t, but rather by what it is and still is. There are exceptions, of course; rapidly debilitating disease, unremitting pain, incomprehensible horror at the slow decay of mind. But I would argue confidently that the elderly are not in constant woe of that which they can no longer do. Like living beings, they deal with it and continue on in the business of being. To consider the elderly as “waiting for the rest and peace of death” is a dangerous and ugly notion, and one very far from the truth.

Luckily, functional decline as a correlate of age is on the way out. We will live to 100 not in a period of decline upon hitting our mid-twenties, but in a continuing period of youthfulness. There are no longevity therapies on the table that offer to truly prolong life indefinitely without actually reversing aging. Death and aging are not separate things or processes; death is when aging has won the battle. Aging is slow death, and a truly-indefinite delaying of death ipso facto necessitates a reversal of aging, and a remediation of the physiological conditions that ultimately lead to death (i.e., what we colloquially call aging). To think that we will be prolonging our lives not as youthful beings of whatever physiological age we so desire but instead as elderly, age-ravaged beings patching new holes and bracing old crutches, is to some extent mistake the cause for the symptom. If we prolong life significantly, we will prolong the healthy portion of our lives first and foremost. The centenarians of next century will look as healthy as the 20-year-olds of last.

Thus, one of the impediments preventing us from seeing death at 100 as a tragedy, as dying before one’s time, will be put to rest as well. When we see a 100-year-old die in future, he or she will have the young face of someone who we feel today has died before their time. We won’t be intuitively inclined to look back upon the gradual loss of function and physiological-robustness as leading to and foretelling this point, thereby making it seem inevitable or somehow natural. We will see a terribly sad 20-year-old, wishing they had more time. We will be able to envision with vivid viscerality the bright and buoyant things they could be doing were they not bedridden and stricken with sickness unto death.

Moreover, that gradual decline into visually apprehensible old age also highlights another impediment to seeing the elderly as continually growing beings with a future to look forward to rather than fight against. The gradual decline of our mental faculties makes it seem that we would be accumulating experience and memory at a deficit, cumulatively losing the ability to think, judge, remember, and experience. Thus old age conjures to mind more senility than wisdom for many people.

This, too, is less true than delusive. Again, this type of thinking is engendered by comparing what they seem to be with what they aren’t or once were. In any case, it will be even less true in the future, when longevity therapies restore our mental health to its youthful glory. Then, the prospect of ever-continuing experience and personal growth, ever-accumulating wisdom and knowledge, ever sharper consideration and discernment, is not so intuitively improbable. The claim that we can in fact continue to grow in how smart, ethical, knowledgeable, and deliberative we are will not be so easily balkable when one’s physiological state ceases to be an indicator of one’s chronological age.

Another common criticism of indefinite longevity in regard to the downfalls of old age comes from Max Planck’s statement that science progresses one funeral at a time; that men and women of a given generation become so attached to their theories that they remain attached in the face of contrary evidence, and it takes their very death for new theories to be embraced by new generations unencumbered by the consideration that “after all this time I might actually be wrong after all”. From this sentiment follows the criticism that significantly extending the average human lifespan will slow progress in science by preventing the death those grafted unflinchingly to a given theory. I would argue that such a sentiment stems from the view of the elderly previously defined and defied, namely as beings more defined by what they have lost than by what they have, as beings fighting against the grain of growth. To view the elderly as continually growing beings forces one to see this criticism as somewhat naïve.

Along another line of argumentation, if we assume that this observation is correct and elderly academics refusing to let their own cherished theories die at the hands of the new is a real concern only aggravated by the coming of longevity therapies, then we still have reason to believe that longevity therapies can change the nature of the game by a large enough extent to negate these problematic concerns.

If some people refuse to consider in light of new evidence or perspective that their theory is wrong, refuse to allow the series of thought leading to the realization that all they have worked for is of lesser importance now, the most obvious cause of discontent would seem to be the notion of their own onrushing death. “If my theory is wrong, there isn’t time – or perhaps just youthful vigor – enough to do it all over again from scratch.” Someone worked his lifetime to achieve recognition in his field, and with his death so close around the corner, he faces the prospect of having all that work and worth be devalued by new developments. It is a scary thought, and the notion that people willingly or subconsciously refuse to consider facts that undermine their theory, and its perceived worth in their field, is least conceivable under such conditions. Thusly considered, Planck’s notion doesn’t appear as naïve as it first seemed.

But this is the very concern set to be alleviated by longevity therapies. If the concern with being wrong is most impacted by one’s impeding death, and the fact that one wouldn’t have the time or energy to create another groundbreaking paradigm upheaval in their chosen field should one’s namesake-theory prove to be mistaken, then the arrival of longevity therapies should not only fail to exasperate and aggravate this situation, but indeed may even ameliorate or negate it, allowing people to let their theories go under the comforting thought that they have all the time in the world to do it again.

My friend and peer Gennady Stolyarov II combats this criticism admirably, arguing that such instances occur due to the functional decline that comes with graceless old age, due to senility and a loss of mental flexibility. I think there is definitely some weight and worth to this consideration. And luckily, this, too, is a concern that is alleviated rather than aggravated by the introduction of longevity therapies. Longevity therapies will increase our healthy lifespans rather than stretch out the slow rot of our old age, as remarked earlier. Thus the longevity therapies that many critics argue could exasperate this progress-stalling state of affairs could, along yet another line of argumentation, constitute the very thing that jolts this state of affairs into reform. If senility and loss of mental flexibility contribute to Planck’s notion that life (or more properly the absence of timely death) forestalls scientific progress, then longevity therapies may constitute the source of senility’s demise and mental flexibility’s restoration.

In any case, even if we accept Plank’s notion as true, and conclude that indefinite longevity will aggravate rather than alleviate this state of affairs, faster progress in the sciences or the humanities is no justification for simply doing nothing to negate physically remediable sources of death and disease.

It seems to me a truism that we get smarter, more ethical, and more deliberative as we age. To think otherwise is in many cases derivative of the notion that physiology and experience alike are on the decline once we “peak” in our mid-twenties, downhill into old age – which does undoubtedly happen, and which inarguably does cause functional decline. But longevity therapies are nothing more nor less than the maintenance of normative functionality; longevity therapies would thus not only negate the functional decline that comes with old age, and with it the source of the problem arguably at the heart of the concern that longer life will slow progress even more, but might even constitute the only foreseeable fix to the problem by definition, because indefinite longevity is defined as (or more properly, synonymous with) the maintenance of normative functionality, a.k.a. the indefinite prevention of functional decline. There is no reason to expect that, in a time when we age without functional decline, the ethicality and experience of each human being wouldn’t increase as we age just as they arguably do as we age from two to twenty to thirty.

Increasing longevity will not bring with it prolonged old-age, a frozen decay and decrepit delay, but will instead prolong our youthful lives and make us continually growing beings, getting smarter and more ethical all the time. Indefinite longevity will not slow progress, it will accelerate it! Instead of having thinking, being beings die after ten decades, they can continue to think and be. They can build upon the edifice of their existence and experience continually, reaching heights unheralded in flighty fits and bounds. Moreover, increasingly more and more people may very well be a boon to the momentum of progress. It could be argued that the increasing rate of progress was aided by the increase in global population that preceded it, providing not only more people to have more thoughts, but more people to challenge existing thought and to provide feedback accordingly in forward fashion. Statistically speaking, more people should mean more ideas, and more ideas should mean more good ideas, all else being equal.

Thus indefinite longevity will better progress, not deter it, and will do so on the scale of both self and society. We will continue to grow, to learn, and to yearn. But more than that – we will continue to be – and that in itself is cause for good pause. In all our worry about stalled progress and boredom, we forget that even if indefinite longevity didn’t bring with it a host of advantages and boons to the boom of progress and exalted strife intrinsic to life, the ability to simply continue being is incommunicably better than the alternative, which does nothing but put an end to all other alternatives.

Franco Cortese is an editor for Transhumanity.net, as well as one of its most frequent contributors.  He has also published articles and essays on Immortal Life and The Rational Argumentator. He contributed 4 essays and 7 debate responses to the digital anthology Human Destiny is to Eliminate Death: Essays, Rants and Arguments About Immortality.

Franco is an Advisor for Lifeboat Foundation (on its Futurists Board and its Life Extension Board) and contributes regularly to its blog.

Longevity’s Bottleneck May Be Funding, But Funding’s Bottleneck is Advocacy – Article by Franco Cortese

Longevity’s Bottleneck May Be Funding, But Funding’s Bottleneck is Advocacy – Article by Franco Cortese

The New Renaissance Hat
Franco Cortese
August 21, 2013
******************************
When asked what the biggest bottleneck for Radical or Indefinite Longevity is, most thinkers say funding. Some say the biggest bottleneck is breakthroughs and others say it’s our way of approaching the problem (i.e., that many are seeking healthy life extension, a.k.a. “aging gracefully”, instead of more comprehensive methods of indefinite life extension), but the majority seem to feel that what is really needed is adequate funding to plug away at developing and experimentally verifying the various, sometimes mutually exclusive technologies and methodologies that have already been proposed. I claim that Radical Longevity’s biggest bottleneck is not funding, but advocacy.
***
This is because the final objective of increased funding for Radical Longevity and Life Extension research can be more effectively and efficiently achieved through public advocacy for Radical Life Extension than it can by direct funding or direct research, per unit of time or effort. Research and development obviously still need to be done, but an increase in researchers needs an increase in funding, and an increase in funding needs an increase in the public perception of RLE’s feasibility and desirability.
***

There is no definitive timespan that it will take to achieve indefinitely extended life. How long it takes to achieve Radical Longevity is determined by how hard we work at it and how much effort we put into it. More effort means that it will be achieved sooner. And by and large, an increase in effort can be best achieved by an increase in funding, and an increase in funding can be best achieved by an increase in public advocacy. You will likely accelerate the development of Indefinitely Extended Life, per unit of time or effort, by advocating the desirability, ethicality, and technical feasibility of longer life than you will by doing direct research, or by working towards the objective of directly contributing funds to RLE projects and research initiatives.

In order to get funding, we need to demonstrate with explicit clarity just how much we want it, and that we can do so while minimizing potentially negative societal repercussions like overpopulation. We must do our best to vehemently invalidate the Deathist clichés that promulgate the sentiment that Life Extension is dangerous or unethical. It needn’t be either, nor is it necessarily likely to be either.

Some think that spending one’s time deliberating the potential issues that could result from greatly increased lifespans and the ways in which we could mitigate or negate them won’t make a difference until greatly increased lifespans are actually achieved. I disagree. While any potentially negative repercussions of RLE (like overpopulation) aren’t going to happen until RLE is achieved, offering solution paradigms and ways in which we could negate or mitigate such negative repercussions decreases the time we have to wait for it by increasing the degree with which the wider public feels it to be desirable, and that it can very well be done safely and ethically. Those who are against radical life extension are against it either because they think it is infeasible (in which case being “against” it may be too strong a descriptor) or because they have qualms relating to its ethicality or its safety. More people openly advocating against it would mean a higher public perception of its undesirability. Whether RLE is eventually achieved via private industry or via government-subsidized research initiatives, we need to create the public perception that it is widely desired before either government or industry will take notice.

The sentiment that that the best thing we can do is simply live healthily and wait until progress is made seems to be fairly common as well. People have the feeling that researchers are working on it, that it will happen if it can happen, and that waiting until progress is made is the best course to take. Such lethargy will not help Radical Longevity in any way. How long we have to wait for RLE is a function of how much effort we put into it. And in this article I argue that how much funding and attention RLE receives is by and large a function of how widespread the public perception of its feasibility and desirability is.

This isn’t simply about our individual desire to live longer. It might be easier to hold the sentiment that we should just wait it out until it happens if we only consider its impact on the scale of our own individual lives. Such a sentiment may also be aided by the view that greatly longer lives would be a mere advantage, nice but unnecessary. I don’t think this is the case. I argue that the technological eradication of involuntary death is a moral imperative if there ever was one. If how long we have to wait until RLE is achieved depends on how vehemently we demand it and on how hard we work to create the public perception that longer life is widely longed-for, then to what extent are 100,000 lives lost potentially needlessly every day while we wait on our hands? One million people will die a wasteful and involuntary death in the next 10 days: one million real lives. This puts the Deathist charges of inethicality in a ghostly new light. If advocating the desirability, feasibility, and radical ethicality of RLE can hasten its implementation by even a mere 10 days, then one million lives that would have otherwise been lost will have been saved by the efforts of RLE advocates, researchers and fiscal supporters. Seen in this way, working toward RLE may very well be the most ethical and humanitarian way you could spend your time, in terms of the number of lives saved and/or the amount of suffering prevented.

This is a contemporary problem that we can have a direct impact on. People intuitively assume that we won’t achieve indefinitely extended life until far in the future. This makes them conflate any lives saved by indefinitely extended lifespans with lives yet to come into existence. This makes them see involuntary death as a problem of the future, rather than a problem of today. But more people than I’ve ever known will die tomorrow, from causes that are physically possible to obviate and ameliorate – indeed, from causes that we have potential and conceptual solutions for today.
***

I have attempted to show in this article that advocating RLE should be considered as “working toward it” to as great an extent as directly funding it or performing direct research on it is considered as “working toward it”. Advocacy has greater potential to increase its widespread desirability than direct work or funding does, and increasing both its desirability and the public perception of its desirability has more potential to generate increased funding and research-attention for RLE than direct funding or research does. Advocacy thus has the potential to contribute to the arrival of RLE and hasten its implementation just as much, if not more so (as I have attempted to argue in this article), than practical research or direct funding does. This should motivate people to help create the momentous momentum we need to really get the ball rolling. To be an RLE advocate is to be an RLE worker. Involuntary death from age-associated, physically remediable causes is the largest source of death, destruction, and suffering today.  Don’t you want to help prevent the most widespread source of death and of suffering in existence today?  Don’t you want to help mitigate the most pressing moral concern not only of today, but of the entirety of human history – namely physically remediable involuntary death?

Then advocate the technological eradication of involuntary death. Advocate the technical feasibility, extreme desirability, and blatant ethicality of indefinitely extending life. Death is a cataclysm. We need not sanctify the seemingly inevitable any longer. We need not tell ourselves that death is somehow a good thing, or something we can do nothing about, in order to live with the “fact” of it any longer. Soon it won’t be fact of life. Soon it will be artifact of history. Life may not be ipso facto valuable according to some philosophies of value – but life is a necessary precondition for any sort of value whatsoever. Death is dumb, dummy! An incontrovertible waste convertible into nothing! A negative-sum blight! So if you want to contribute to the problems of today, if you want to help your fellow man today, then stand proud and shout loud, “Doom to Arbitrary Duty and Death to  Arbitrary Death!” at every crowd cowed by the seeming necessity of death.

Franco Cortese is an editor for Transhumanity.net, as well as one of its most frequent contributors.  He has also published articles and essays on Immortal Life and The Rational Argumentator. He contributed 4 essays and 7 debate responses to the digital anthology Human Destiny is to Eliminate Death: Essays, Rants and Arguments About Immortality.

Franco is an Advisor for Lifeboat Foundation (on its Futurists Board and its Life Extension Board) and contributes regularly to its blog.

Transhumanism and Mind Uploading Are Not the Same – Video by G. Stolyarov II

Transhumanism and Mind Uploading Are Not the Same – Video by G. Stolyarov II

In what is perhaps the most absurd attack on transhumanism to date, Mike Adams of NaturalNews.com equates this broad philosophy and movement with “the entire idea that you can ‘upload your mind to a computer'” and further posits that the only kind of possible mind uploading is the destructive kind, where the original, biological organism ceases to exist. Mr. Stolyarov refutes Adams’s equation of transhumanism with destructive mind uploading and explains that advocacy of mind uploading is neither a necessary nor a sufficient component of transhumanism.

References
– “Transhumanism and Mind Uploading Are Not the Same” – Essay by G. Stolyarov II
– “Transhumanism debunked: Why drinking the Kurzweil Kool-Aid will only make you dead, not immortal” – Mike Adams – NaturalNews.com – June 25, 2013
SENS Research Foundation
– “Nanomedicine” – Wikipedia
– “Transhumanism: Towards a Futurist Philosophy” – Essay by Max More
2045 Initiative Website
Bebionic Website
– “How Can I Live Forever?: What Does and Does Not Preserve the Self” – Essay by G. Stolyarov II
– “Immortality: Bio or Techno?” – Essay by Franco Cortese

Heidegger, Cooney, and The Death-Gives-Meaning-To-Life Hypothesis – Article by Franco Cortese

Heidegger, Cooney, and The Death-Gives-Meaning-To-Life Hypothesis – Article by Franco Cortese

The New Renaissance Hat
Franco Cortese
August 10, 2013
******************************
One common argument against indefinite lifespans is that a definitive limit to one’s life – that is, death – provides some essential baseline reference, and that it is only in contrast to this limiting factor that life has any meaning at all. In this article I refute the argument’s underlying premises, and then argue that even if such premises were taken as true, the argument’s conclusion – that eradicating death would negate the “limiting factor” that legitimizes life – is also invalid, because the ever-changing nature of self and society – and the fact that opportunities once here are now gone –  can constitute such a scarcitizing factor just as well as death can.
***
Death gives meaning to life? No! Death is meaninglessness!
***

One version of the argument is given in Brian Cooney’s Posthumanity: Thinking Philosophically about the Future, an introductory philosophical text that uses various futurist scenarios and concepts to illustrate the broad currents of Western philosophy. Towards the end of the book, Cooney makes his argument against immortality, claiming that if we had all the time in the universe to do what we wanted, then we wouldn’t do anything at all. Essentially, his argument boils down to “if there is no possibility of not being able to do something in the future, then why would we ever do it?”

Each chapter of Cooney’s book ends with a dialogue between a fictional human and posthuman, meant to better exemplify the arguments laid out in the chapter and their various interpretations. In the final chapter, “Posthumanity”, Cooney-as-posthuman writes:

Our ancestors realized that immortality would be a curse, and we have never been tempted to bestow it on ourselves… We didn’t want to be like Homer’s gods and goddesses. The Odyssey is saturated with the contrast of mortal human life, the immortality of the gods and the shadow life of the dead in Hades… Aren’t you struck by the way these deities seem to have nothing better to do than be an active audience for the lives and deeds of humans… These gods are going to live forever and there is no scarcity of whatever resources they need for their divine way of life. So (to borrow a phrase from your economists) there is no opportunity cost to their choosing to do one thing rather than another or spend time with one person rather than another. They have endless time and resources to pursue other alternatives and relationships later. Consequently, they can’t take anyone or anything seriously… Moreover, their lives lack meaning because they are condemned to living an unending story, one that can never have narrative unity… That is the fate we avoid by fixing a standard limit to our lives. Immortals cannot have what Kierkegaard called ‘passion’… A mind is aware of limitless possibilities – it can think of itself as doing anything conceivable – and it can think of a limitless time in which to do it all. To choose a life – one that will progress like a story from its beginning to its end – is to give up the infinite for the finite… We consider ourselves free because we were liberated from the possibility of irrationality and selfishness.”   –   (Cooney, 2004, 183-186).
***

Thus we see that Cooney’s argument rests upon the thesis that death gives meaning to life because it incurs finitude, and finitude forces us to choose certain actions over others. This assumes that we make actions on the basis of not being able to do them again. But people don’t make most of their decisions this way. We didn’t go out to dinner because the restaurant was closing down; we went out for dinner because we wanted to go out for dinner. I think that Cooney’s version of the argument is naïve. We don’t make the majority of our decisions by contrasting an action to the possibility of not being able to do it in future.

Cooney’s argument seems to be that if we had a list of all possible actions set before us, and time were limitless, we might accomplish all the small, negligible things first, because they are easier and all the hard things can wait. If we had all the time in the world, we would have no reference point with which to judge how important a given action or objective is. If we really can do every single thing on that ‘listless list’, then why bother, if each is as important as every other? In his line of reasoning, importance requires scarcity. If we can do everything it was possible to do, then there is nothing that determines one thing as being more important than another. Cooney makes an analogy with an economic concept to clarify his position. Economic definitions of value require scarcity; if everything were as abundant as everything else, if nothing were scarce, then we would have no way of ascribing economic value to a given thing, such that one thing has more economic value than another. So too, Cooney argues, with possible choices in life.

But what we sometimes forget is that ecologies aren’t always like economies.

The Grave Dig|nitty of Death

In the essay collection “Transhumanism and its Critics”, Hava Tirosh-Samuelson writes:

Finally, since death is part of the cycle of life characteristic of finite creatures, we will need to concern ourselves with a dignified death… the dying process need not be humiliating or dehumanizing; if done properly, as the hospice movement has shown us, the dying process itself can be dignified by remembering that we are dealing with persons whose life narratives in community are imbued with meaning, and that meaning does not disappear when bodily functions decline or finally cease.”   –  (Tirosh-Samuelson, 2011).
***

She may have provided a line of reasoning for arguing that death need not be indignifying or humiliating (convinced me that death has any dignity whatsoever), but I would say that she’s digging her claim’s own grave by focusing on the nitty-gritty details of humiliation and dignity. It is not the circumstances of death that make death problematic and wholly unsatisfactory; it is the fact that death negates life. Only in life can an individual exhibit dignity or fail by misemphasis. Sure, people can remember you after you have gone, and contributing to larger projects that continue after one’s own death can provide some meaning… but only for those still alive – not for the dead. The meaning held or beheld by the living could pertain to the dead, but that doesn’t constitute meaning to or for the dead, who forfeited the capability to experience, or behold meaning when they lost the ability to experience, or behold anything at all.

Tirosh-Samuelson’s last claim, that death need not be dehumanizing, appears to be founded upon her personal belief in an afterlife more than the claim that meaning doesn’t necessarily have to cease when we die, because we are part of “a community imbued with meaning” and this community will continue after our own death, thus providing continuity of meaning.  Tirosh-Samuelson’s belief in the afterlife also largely invalidates the claims she makes, since death means two completely different things to an atheist and a theist. As I have argued elsewhere (Cortese, 2013, 160-172), only the atheist speaks of death; the theist speaks merely of another kind of life. For a theist, death would not be dehumanizing, humiliating, or indignifying if all the human mental attributes a person possessed in the physical world would be preserved in an afterlife.

Another version of the “limiting factor” argument comes from Martin Heidegger, in his massive philosophical work Being and Time. In the section on being-toward-death, Heidegger claims, on one level, that Being must be a totality, and in order to be a totality (in the sense of being absolute or not containing anything outside of itself) it must also be that which it is not. Being can only become what it is not through death, and so in order for Being to become a totality (which he argues it must in order to achieve authenticity – which is the goal all along, after all), it must become what it is not – that is, death – for completion (Heidegger, 1962). This reinforces some interpretations made in linking truth with completion and completion with staticity.

Another line of reasoning taken by Heidegger seems to reinforce the interpretation made by Cooney, which was probably influenced heavily by Heidegger’s concept of being-toward-death. The “fact” that we will one day die causes Being to reevaluate itself, realize that it is time and time is finite, and that its finitude requires it to take charge of its own life – to find authenticity. Finitude for Heidegger legitimizes our freedom. If we had all the time in the world to become authentic, then what’s the point? It could always be deferred. But if our time is finite, then the choice of whether to achieve authenticity or not falls in our own hands. Since we must make choices on how to spend our time, failing to become authentic by spending one’s time on actions that don’t help achieve authenticity becomes our fault.Can Limitless Life Still Have a “Filling Stillness” and “Legitimizing Limit”?

Perhaps more importantly, even if their premises were correct (i.e., that the “change” of death adds some baseline limiting factor, causing you to do what you would not have done if you had all the time in the world, and thereby constituting our main motivator for motion and metric for meaning), Cooney and Heidegger are still wrong in the conclusion that indefinitely extended life would destroy or jeopardize this “essential limitation”.

The crux of the “death-gives-meaning-to-life” argument is that life needs scarcity, finitude, or some other factor restricting the possible choices that could be made, in order to find meaning. But final death need not be the sole candidate for such a restricting factor.
***
Self: La Petite Mort
***
All changed, changed utterly… A terrible beauty is born. The self sways by the second. We are creatures of change, and in order to live we die by the moment. I am not the same as I once was, and may never be the same again. The choices we prefer and the decisions we are most likely to make go through massive upheaval.The changing self could constitute this “scarcitizing” or limiting factor just as well as death could. We can be compelled to prioritize certain choices and actions over others because we might be compelled to choose differently in another year, month, or day. We never know what we will become, and this is a blessing. Life itself can act as the limiting factor that, for some, legitimizes life.

Society: La Petite Fin du Monde

Society is ever on an s-curve swerve of consistent change as well. Culture is in constant upheaval, with new opportunities opening up(ward) all the time. Thus the changing state of culture and humanity’s upheaved hump through time could act as this “limiting factor” just as well as death or the changing self could. What is available today may be gone tomorrow. We’ve missed our chance to see the Roman Empire at its highest point, to witness the first Moon landing, to pioneer a new idea now old. Opportunities appear and vanish all the time.

Indeed, these last two points – that the changing state of self and society, together or singly, could constitute such a limiting factor just as effectively as death could – serve to undermine another common argument against the desirability of limitless life (boredom) – thereby killing two inverted phoenixes with one stoning. Too often is this rather baseless claim bandied about as a reason to forestall indefinitely extended lifespans – that longer life will lead to increased boredom. The fact that self and society are in a constant state of change means that boredom should become increasingly harder to maintain. We are on the verge of our umpteenth rebirth, and the modalities of being that are set to become available to us, as selves and as societies, will ensure that the only way to entertain the notion of increased boredom  will be to personally hard-wire it into ourselves.

Life gives meaning to life, dummy!

Death is nothing but misplaced waste, and I think it’s time to take out the trash, with haste. We don’t need death to make certain opportunities more pressing than others, or to allow us to assign higher priorities to one action than we do to another. The Becoming underlying life’s self-overcoming will do just fine.

References

Cooney, B. (2004). Posthumanity: Thinking Philosophically about the Future. Rowman & Littlefield. ISBN-10: 0742532933

Cortese, F. (2013). “Religion vs. Radical Longevity: Belief in Heaven is the Biggest Barrier to Eternal Life?!”. Human Destiny is to Eliminate Death: Essays, Arguments and Rants about Immortalism. Ed. Pellissier, H. 1st ed. Niagara Falls: Center for Transhumanity. 160-172.

Heidegger, M., Macquarrie, J., & Robinson, E. (1962). Being and time. Malden, MA: Blackwell.

Tirosh-Samuelson, H. (2011). “Engaging Transhumanism”. Transhumanism and its Critics. Ed. Grassie, W., Hansell, G. Philadelphia, PA: Metanexus Institute.

Franco Cortese is an editor for Transhumanity.net, as well as one of its most frequent contributors.  He has also published articles and essays on Immortal Life and The Rational Argumentator. He contributed 4 essays and 7 debate responses to the digital anthology Human Destiny is to Eliminate Death: Essays, Rants and Arguments About Immortality.

Franco is an Advisor for Lifeboat Foundation (on its Futurists Board and its Life Extension Board) and contributes regularly to its blog.

We Seek Not to Become Machines, But to Keep Up with Them – Article by Franco Cortese

We Seek Not to Become Machines, But to Keep Up with Them – Article by Franco Cortese

The New Renaissance Hat
Franco Cortese
July 14, 2013
******************************
This article attempts to clarify four areas within the movement of Substrate-Independent Minds and the discipline of Whole-Brain Emulation that are particularly ripe for ready-hand misnomers and misconceptions.
***

Substrate-Independence 101:

  • Substrate-Independence:
    It is Substrate-Independence for Mind in general, but not any specific mind in particular.
  • The Term “Uploading” Misconstrues More than it Clarifies:
    Once WBE is experimentally-verified, we won’t be using conventional or general-purpose computers like our desktop PCs to emulate real, specific persons.
  • The Computability of the Mind:
    This concept has nothing to do with the brain operating like a computer. The liver is just as computable as the brain; their difference is one of computational intensity, not category.
  • We Don’t Want to Become The Machines – We Want to Keep Up With Them!:
    SIM & WBE are sciences of life-extension first and foremost. It is not out of sheer technophilia, contemptuous “contempt of the flesh”, or wanton want of machinedom that proponents of Uploading support it. It is, for many, because we fear that Recursively Self-Modifying AI will implement an intelligence explosion before Humanity has a chance to come along for the ride. The creation of any one entity superintelligent to the rest constitutes both an existential risk and an antithetical affront to Man, whose sole central and incessant essence is to make himself to an increasingly greater degree, and not to have some artificial god do it for him or tell him how to do it.
Substrate-Independence
***

The term “substrate-independence” denotes the philosophical thesis of functionalism – that what is important about the mind and its constitutive sub-systems and processes is their relative function. If such a function could be recreated using an alternate series of component parts or procedural steps, or can be recreated on another substrate entirely, the philosophical thesis of Functionalism holds that it should be the same as the original, experientially speaking.

However, one rather common and ready-at-hand misinterpretation stemming from the term “Substrate-Independence” is the notion that we as personal selves could arbitrarily jump from mental substrate to mental substrate, since mind is software and software can be run on various general-purpose machines. The most common form of this notion is exemplified by scenarios laid out in various Greg Egan novels and stories, wherein a given person sends their mind encoded as a wireless signal to some distant receiver, to be reinstantiated upon arrival.

The term “substrate-independent minds” should denote substrate independence for the minds in general, again, the philosophical thesis of functionalism, and not this second, illegitimate notion. In order to send oneself as such a signal, one would have to put all the processes constituting the mind “on pause” – that is, all causal interaction and thus causal continuity between the software components and processes instantiating our selves would be halted while the software was encoded as a signal, transmitted and subsequently decoded. We could expect this to be equivalent to temporary brain death or to destructive uploading without any sort of gradual replacement, integration, or transfer procedure. Each of these scenarios incurs the ceasing of all causal interaction and causal continuity among the constitutive components and processes instantiating the mind. Yes, we would be instantiated upon reaching our destination, but we can expect this to be as phenomenally discontinuous as brain death or destructive uploading.

There is much talk in the philosophical and futurist circles – where Substrate-Independent Minds are a familiar topic and a common point of discussion – on how the mind is software. This sentiment ultimately derives from functionalism, and the notion that when it comes to mind it is not the material of the brain that matters, but the process(es) emerging therefrom. And due to the fact that almost all software is designed to as to be implemented on general-purpose (i.e., standardized) hardware, that we should likewise be able to transfer the software of the mind into a new physical computational substrate with as much ease as we do software. While we would emerge from such a transfer functionally isomorphic with ourselves prior to the jump from computer to computer, we can expect this to be the phenomenal equivalent of brain death or destructive uploading, again, because all causal interaction and continuity between that software’s constitutive sub-processes has been discontinued. We would have been put on pause in the time between leaving one computer, whether as static signal or static solid-state storage, and arriving at the other.

This is not to say that we couldn’t transfer the physical substrate implementing the “software” of our mind to another body, provided the other body were equipped to receive such a physical substrate. But this doesn’t have quite the same advantage as beaming oneself to the other side of Earth, or Andromeda for that matter, at the speed of light.

But to transfer a given WBE to another mental substrate without incurring phenomenal discontinuity may very well involve a second gradual integration procedure, in addition to the one the WBE initially underwent (assuming it isn’t a product of destructive uploading). And indeed, this would be more properly thought of in the context of a new substrate being gradually integrated with the WBE’s existing substrate, rather than the other way around (i.e., portions of the WBE’s substrate being gradually integrated with an external substrate.) It is likely to be much easier to simply transfer a given physical/mental substrate to another body, or to bypass this need altogether by actuating bodies via tele-operation instead.

In summary, what is sought is substrate-independence for mind in general, and not for a specific mind in particular (at least not without a gradual integration procedure, like the type underlying the notion of gradual uploading, so as to transfer such a mind to a new substrate without causing phenomenal discontinuity).

The Term “Uploading” Misconstrues More Than It Clarifies

The term “Mind Uploading” has some drawbacks and creates common initial misconceptions. It is based off terminology originating from the context of conventional, contemporary computers – which may lead to the initial impression that we are talking about uploading a given mind into a desktop PC, to be run in the manner that Microsoft Word is run. This makes the notion of WBE more fantastic and incredible – and thus improbable – than it actually is. I don’t think anyone seriously speculating about WBE would entertain such a notion.

Another potential misinterpretation particularly likely to result from the term “Mind Uploading” is that we seek to upload a mind into a computer – as though it were nothing more than a simple file transfer. This, again, connotes modern paradigms of computation and communications technology that are unlikely to be used for WBE. It also creates the connotation of putting the mind into a computer – whereas a more accurate connotation, at least as far as gradual uploading as opposed to destructive uploading is concerned, would be bringing the computer gradually into the biological mind.

It is easy to see why the term initially came into use. The notion of destructive uploading was the first embodiment of the concept. The notion of gradual uploading so as to mitigate the philosophical problems pertaining to how much a copy can be considered the same person as the original, especially in contexts where they are both simultaneously existent, came afterward. In the context of destructive uploading, it makes more connotative sense to think of concepts like uploading and file transfer.

But in the notion of gradual uploading, portions of the biological brain – most commonly single neurons, as in Robert A. Freitas’s and Ray Kurzweil’s versions of gradual uploading – are replaced with in-vivo computational substrate, to be placed where the neuron it is replacing was located. Such a computational substrate would be operatively connected to electrical or electrochemical sensors (to translate the biochemical or, more generally, biophysical output of adjacent neurons into computational input that can be used by the computational emulation) and electrical or electrochemical actuators (to likewise translate computational output of the emulation into biophysical input that can be used by adjacent biological neurons). It is possible to have this computational emulation reside in a physical substrate existing outside of the biological brain, connected to in-vivo biophysical sensors and actuators via wireless communication (i.e., communicating via electromagnetic signal), but this simply introduces a potential lag-time that may then have to be overcome by faster sensors, faster actuators, or a faster emulation. It is likely that the lag-time would be negligible, especially if it was located in a convenient module external to the body but “on it” at all times, to minimize transmission delays increasing as one gets farther away from such an external computational device. This would also likely necessitate additional computation to model the necessary changes to transmission speed in response to how far away the person is.  Otherwise, signals that are meant to arrive at a given time could arrive too soon or too late, thereby disrupting functionality. However, placing the computational substrate in vivo obviates these potential logistical obstacles.

This notion is I think not brought into the discussion enough. It is an intuitively obvious notion if you’ve thought a great deal about Substrate-Independen -Minds and frequented discussions on Mind Uploading. But to a newcomer who has heard the term Gradual Uploading for the first time, it is all too easy to think “yes, but then one emulated neuron would exist on a computer, and the original biological neuron would still be in the brain. So once you’ve gradually emulated all these neurons, you have an emulation on a computer, and the original biological brain, still as separate physical entities. Then you have an original and the copy – so where does the gradual in Gradual Uploading come in? How is this any different than destructive uploading? At the end of the day you still have a copy and an original as separate entities.”

This seeming impasse is I think enough to make the notion of Gradual Uploading seem at least intuitively or initially incredible and infeasible before people take the time to read the literature and discover how gradual uploading could actually be achieved (i.e., wherein each emulated neuron is connected to biophysical sensors and actuators to facilitate operational connection and causal interaction with existing in-vivo biological neurons) without fatally tripping upon such seeming logistical impasses, as in the example above. The connotations created by the term I think to some extent make it seem so fantastic (as in the overly simplified misinterpretations considered above) that people write off the possibility before delving deep enough into the literature and discussion to actually ascertain the possibility with any rigor.

The Computability of the Mind

Another common misconception is that the feasibility of Mind Uploading is based upon the notion that the brain is a computer or operates like a computer. The worst version of this misinterpretation that I’ve come across is that proponents and supporters of Mind Uploading are claiming that the mind is similar in operation current and conventional paradigms of computer.

Before I elaborate why this is wrong, I’d like to point out a particularly harmful sentiment that can result from this notion. It makes the concept of Mind Uploading seem dehumanizing, because conventional computers don’t display anything like intelligence or emotion. This makes people conflate the possible behaviors of future computers with the behaviors of current computers. Obviously computers don’t feel happiness or love, and so to say that the brain is like a computer is a farcical claim.

Machines don’t have to be as simple or as un-adaptable and invariant as the are today. The universe itself is a machine. In other words, either everything is a machine or nothing is.

This misunderstanding also makes people think that advocates and supporters of Mind Uploading are claiming that the mind is reducible to basic or simple autonomous operations, like cogs in a machine, which constitutes for many people a seeming affront to our privileged place in the universe as humans, in general, and to our culturally ingrained notions of human dignity being inextricably tied to physical irreducibility, in particular. The intuitive notions of human dignity and the ontologically privileged nature of humanity have yet to catch up with physicalism and scientific materialism (a.k.a. metaphysical naturalism). It is not the proponents of Mind Uploading that are raising these claims, but science itself – and for hundreds of years, I might add. Man’s privileged and physically irreducible ontological status has become more and more undermined throughout history since at least as far back as the Darwin’s theory of Evolution, which brought the notion of the past and future phenotypic evolution of humanity into scientific plausibility for the first time.

It is also seemingly disenfranchising to many people, in that notions of human free will and autonomy seem to be challenged by physical reductionism and determinism – perhaps because many people’s notions of free will are still associated with a non-physical, untouchably metaphysical human soul (i.e., mind-body dualism) which lies outside the purview of physical causality. To compare the brain to a “mindless machine” is still for many people disenfranchising to the extent that it questions the legitimacy of their metaphysically tied notions of free will.

Just because the sheer audacity of experience and the raucous beauty of feeling is ultimately reducible to physical and procedural operations (I hesitate to use the word “mechanisms” for its likewise misconnotative conceptual associations) does not take away from it. If it were the result of some untouchable metaphysical property, a sentiment that mind-body-dualism promulgated for quite some time, then there would be no way for us to understand it, to really appreciate it, and to change it (e.g., improve upon it) in any way. Physicalism and scientific materialism are needed if we are to ever see how it is done and to ever hope to change it for the better. Figuring out how things work is one of Man’s highest merits – and there is no reason Man’s urge to discover and determine the underlying causes of the world should not apply to his own self as well.

Moreover, the fact that experience, feeling, being, and mind result from the convergence of singly simple systems and processes makes the mind’s emergence from such simple convergence all the more astounding, amazing, and rare, not less! If the complexity and unpredictability of mind were the result of complex and unpredictable underlying causes (like the metaphysical notions of mind-body dualism connote), then the fact that mind turned out to be complex and unpredictable wouldn’t be much of a surprise. The simplicity of the mind’s underlying mechanisms makes the mind’s emergence all the more amazing, and should not take away from our human dignity but should instead raise it up to heights yet unheralded.

Now that we have addressed such potentially harmful second-order misinterpretations, we will address their root: the common misinterpretations likely to result from the phrase “the computability of the mind”. Not only does this phrase not say that the mind is similar in basic operation to conventional paradigms of computation – as though a neuron were comparable to a logic gate or transistor – but neither does it necessarily make the more credible claim that the mind is like a computer in general. This makes the notion of Mind-Uploading seem dubious because it conflates two different types of physical systems – computers and the brain.

The kidney is just as computable as the brain. That is to say that the computability of mind denotes the ability to make predictively accurate computational models (i.e., simulations and emulations) of biological systems like the brain, and is not dependent on anything like a fundamental operational similarity between biological brains and digital computers. We can make computational models of a given physical system, feed it some typical inputs, and get a resulting output that approximately matches the real-world (i.e., physical) output of such a system.

The computability of the mind has very little to do with the mind acting as or operating like a computer, and much, much more to do with the fact that we can build predictively accurate computational models of physical systems in general. This also, advantageously, negates and obviates many of the seemingly dehumanizing and indignifying connotations identified above that often result from the claim that the brain is like a machine or like a computer. It is not that the brain is like a computer – it is just that computers are capable of predictively modeling the physical systems of the universe itself.

We Want Not To Become Machines, But To Keep Up With Them!

Too often is uploading portrayed as the means to superhuman speed of thought or to transcending our humanity. It is not that we want to become less human, or to become like a machine. For most Transhumanists and indeed most proponents of Mind Uploading and Substrate-Independent Minds, meat is machinery anyways. In other words there is no real (i.e., legitimate) ontological distinction between human minds and machines to begin with. Too often is uploading seen as the desire for superhuman abilities. Too often is it seen as a bonus, nice but ultimately unnecessary.

I vehemently disagree. Uploading has been from the start for me (and I think for many other proponents and supporters of Mind Uploading) a means of life extension, of deferring and ultimately defeating untimely, involuntary death, as opposed to an ultimately unnecessary means to better powers, a more privileged position relative to the rest of humanity, or to eschewing our humanity in a fit of contempt of the flesh. We do not want to turn ourselves into Artificial Intelligence, which is a somewhat perverse and burlesque caricature that is associated with Mind Uploading far too often.

The notion of gradual uploading is implicitly a means of life extension. Gradual uploading will be significantly harder to accomplish than destructive uploading. It requires a host of technologies and methodologies – brain-scanning, in-vivo locomotive systems such as but not limited to nanotechnology, or else extremely robust biotechnology – and a host of precautions to prevent causing phenomenal discontinuity, such as enabling each non-biological functional replacement time to causally interact with adjacent biological components before the next biological component that it causally interacts with is likewise replaced. Gradual uploading is a much harder feat than destructive uploading, and the only advantage it has over destructive uploading is preserving the phenomenal continuity of a single specific person. In this way it is implicitly a means of life extension, rather than a means to the creation of AGI, because its only benefit is the preservation and continuation of a single, specific human life, and that benefit entails a host of added precautions and additional necessitated technological and methodological infrastructures.

If we didn’t have to fear the creation of recursively self-improving AI, biased towards being likely to recursively self-modify at a rate faster than humans are likely to (or indeed, are able to safely – that is, gradually enough to prevent phenomenal discontinuity), then I would favor biotechnological methods of achieving indefinite lifespans over gradual uploading. But with the way things are, I am an advocate of gradual Mind Uploading first and foremost because I think it may prove necessary to prevent humanity from being left behind by recursively self-modifying superintelligences. I hope that it ultimately will not prove necessary – but at the current time I feel that it is somewhat likely.

Most people who wish to implement or accelerate an intelligence explosion a la I.J. Good, and more recently Vernor Vinge and Ray Kurzweil, wish to do so because they feel that such a recursively self-modifying superintelligence (RSMSI) could essentially solve all of humanity’s problems – disease, death, scarcity, existential insecurity. I think that the potential benefits of creating a RSMSI are superseded by the drastic increase in existential risk it would entail in making any one entity superintelligent relative to humanity. The old God of yore is finally going out of fashion, one and a quarter centuries late to his own eulogy. Let’s please not make another one, now with a little reality under his belt this time around.

Intelligence is a far greater source of existential and global catastrophic risk than any technology that could be wielded by such an intelligence (except, of course, for technologies that would allow an intelligence to increase its own intelligence). Intelligence can invent new technologies and conceive of ways to counteract any defense systems we put in place to protect against the destructive potentials of any given technology. A superintelligence is far more dangerous than rogue nanotech (i.e., grey-goo) or bioweapons. When intelligence comes into play, then all bets are off. I think culture exemplifies this prominently enough. Moreover, for the first time in history the technological solutions to these problems – death, disease, scarcity – are on the conceptual horizon. We can fix these problems ourselves, without creating an effective God relative to Man and incurring the extreme potential for complete human extinction that such a relative superintelligence would entail.

Thus uploading constitutes one of the means by which humanity can choose, volitionally, to stay on the leading edge of change, discovery, invention, and novelty, if the creation of a RSMSI is indeed imminent. It is not that we wish to become machines and eschew our humanity – rather the loss of autonomy and freedom inherent in the creation of a relative superintelligence is antithetical to the defining features of humanity. In order to preserve the uniquely human thrust toward greater self-determination in the face of such a RSMSI, or at least be given the choice of doing so, we may require the ability to gradually upload so as to stay on equal footing in terms of speed of thought and general level of intelligence (which is roughly correlative with the capacity to affect change in the world and thus to determine its determining circumstances and conditions as well).

In a perfect world we wouldn’t need to take the chance of phenomenal discontinuity inherent in gradual uploading. In gradual uploading there is always a chance, no matter how small, that we will come out the other side of the procedure as a different (i.e., phenomenally distinct) person. We can seek to minimize the chances of that outcome by extending the degree of graduality with which we gradually replace the material constituents of the mind, and by minimizing the scale at which we gradually replace those material constituents (i.e., gradual substrate replacement one ion-channel at a time would be likelier to ensure the preservation of phenomenal continuity than gradual substrate replacement neuron by neuron would be). But there is always a chance.

This is why biotechnological means of indefinite lifespans have an immediate advantage over uploading, and why if non-human RSMSI were not a worry, I would favor biotechnological methods of indefinite lifespans over Mind Uploading. But this isn’t the case; rogue RSMSI are a potential problem, and so the ability to secure our own autonomy in the face of a rising RSMSI may necessitate advocating Mind Uploading over biotechnological methods of indefinite lifespans.

Mind Uploading has some ancillary benefits over biotechnological means of indefinite lifespans as well, however. If functional equivalence is validated (i.e., if it is validated that the basic approach works), mitigating existing sources of damage becomes categorically easier. In physical embodiment, repairing structural, connectional, or procedural sub-systems in the body requires (1) a means of determining the source of damage and (2) a host of technologies and corresponding methodologies to enter the body and make physical changes to negate or otherwise obviate the structural, connectional, or procedural source of such damages, and then exit the body without damaging or causing dysfunction to other systems in the process. Both of these requirements become much easier in the virtual embodiment of whole-brain emulation.

First, looking toward requirement (2), we do not need to actually design any technologies and methodologies for entering and leaving the system without damage or dysfunction or for actually implementing physical changes leading to the remediation of the sources of damage. In virtual embodiment this requires nothing more than rewriting information. Since in the case of WBE we have the capacity to rewrite information as easily as it was written in the first place, while we would still need to know what changes to make (which is really the hard part in this case), actually implementing those changes is as easy as rewriting a word file. There is no categorical difference, since it is information, and we would already have a means of rewriting information.

Looking toward requirement (1), actually elucidating the structural, connectional or procedural sources of damage and/or dysfunction, we see that virtual embodiment makes this much easier as well. In physical embodiment we would need to make changes to the system in order to determine the source of the damage. In virtual embodiment we could run a section of emulation for a given amount of time, change or eliminate a given informational variable (i.e. structure, component, etc.) and see how this affects the emergent system-state of the emulation instance.

Iteratively doing this to different components and different sequences of components, in trial-and-error fashion, should lead to the elucidation of the structural, connectional or procedural sources of damage and dysfunction. The fact that an emulation can be run faster (thus accelerating this iterative change-and-check procedure) and that we can “rewind” or “play back” an instance of emulation time exactly as it occurred initially means that noise (i.e., sources of error) from natural systemic state-changes would not affect the results of this procedure, whereas in physicality systems and structures are always changing, which constitutes a source of experimental noise. The conditions of the experiment would be exactly the same in every iteration of this change-and-check procedure. Moreover, the ability to arbitrarily speed up and slow down the emulation will aid in our detecting and locating the emergent changes caused by changing or eliminating a given microscale component, structure, or process.

Thus the process of finding the sources of damage correlative with disease and aging (especially insofar as the brain is concerned) could be greatly improved through the process of uploading. Moreover, WBE should accelerate the technological and methodological development of the computational emulation of biological systems in general, meaning that it would be possible to use such procedures to detect the structural, connectional, and procedural sources of age-related damage and systemic dysfunction in the body itself, as opposed to just the brain, as well.

Note that this iterative change-and-check procedure would be just as possible via destructive uploading as it would with gradual uploading. Moreover, in terms of people actually instantiated as whole-brain emulations, actually remediating those structural, connectional, and/or procedural sources of damage as it pertains to WBEs is much easier than physically-embodied humans. Anecdotally, if being able to distinguish among the homeostatic, regulatory, and metabolic structures and processes in the brain from the computational or signal-processing structures and processes in the brain is a requirement for uploading (which I don’t think it necessarily is, although I do think that such a distinction would decrease the ultimate computational intensity and thus computational requirements of uploading, thereby allowing it to be implemented sooner and have wider availability), then this iterative change-and-check procedure could also be used to accelerate the elucidation of such a distinction as well, for the same reasons that it could accelerate the elucidation of structural, connectional, and procedural sources of age-related systemic damage and dysfunction.

Lastly, while uploading (particularly instances in which a single entity or small group of entities is uploaded prior to the rest of humanity – i.e. not a maximally distributed intelligence explosion) itself constitutes a source of existential risk, it also constitutes a means of mitigating existential risk as well. Currently we stand on the surface of the earth, naked to whatever might lurk in the deep night of space. We have not been watching the sky for long enough to know with any certainty that some unforeseen cosmic process could not come along to wipe us out at any time. Uploading would allow at least a small portion of humanity to live virtually on a computational substrate located deep underground, away from the surface of the earth and its inherent dangers, thus preserving the future human heritage should an extinction event befall humanity. Uploading would also prevent the danger of being physically killed by some accident of physicality, like being hit by a bus or struck by lightning.

Uploading is also the most resource-efficient means of life-extension on the table, because virtual embodiment not only essentially negates the need for many physical resources (instead necessitating one, namely energy – and increasing computational price-performance means that just how much a given amount of energy can do is continually increasing).

It also mitigates the most pressing ethical problem of indefinite lifespans – overpopulation. In virtual embodiment, overpopulation ceases to be an issue almost ipso facto. I agree with John Smart’s STEM compression hypothesis – that in the long run the advantages proffered by virtual embodiment will make choosing it over physical embodiment, in the long run at least, an obvious choice for most civilizations, and I think it will be the volitional choice for most future persons. It is safer, more resource-efficient (and thus more ethical, if one thinks that forestalling future births in order to maintain existing life is unethical) and the more advantageous choice. We will not need to say: migrate into virtuality if you want another physically embodied child. Most people will make the choice to go VR themselves simply due to the numerous advantages and the lack of any experiential incomparabilities (i.e., modalities of experience possible in physicality but not possible in VR).

So in summary, yes, Mind Uploading (especially gradual uploading) is more a means of life-extension than a means to arbitrarily greater speed of thought, intelligence or power (i.e., capacity to affect change in the world). We do not seek to become machines, only to retain the capability of choosing to remain on equal footing with them if the creation of RSMSI is indeed imminent. There is no other reason to increase our collective speed of thought, and to do so would be arbitrary – unless we expected to be unable to prevent the physical end of the universe, in which case it would increase the ultimate amount of time and number of lives that could be instantiated in the time we have left.

The fallibility of many of these misconceptions may be glaringly obvious, especially to those readers familiar with Mind Uploading as notion and Substrate-Independent Minds and/or Whole-Brain Emulation as disciplines. I may be to some extent preaching to the choir in these cases. But I find many of these misinterpretations far too predominant and recurrent to be left alone.

Franco Cortese is an editor for Transhumanity.net, as well as one of its most frequent contributors.  He has also published articles and essays on Immortal Life and The Rational Argumentator. He contributed 4 essays and 7 debate responses to the digital anthology Human Destiny is to Eliminate Death: Essays, Rants and Arguments About Immortality.

Franco is an Advisor for Lifeboat Foundation (on its Futurists Board and its Life Extension Board) and contributes regularly to its blog.