Browsed by
Tag: senescence

Dr. Bill Andrews and U.S. Transhumanist Party Chairman Gennady Stolyarov II Discuss Transhumanism and RAADfest at Sierra Sciences

Dr. Bill Andrews and U.S. Transhumanist Party Chairman Gennady Stolyarov II Discuss Transhumanism and RAADfest at Sierra Sciences

Gennady Stolyarov II
Bill Andrews


On October 12, 2019, Brent Nally recorded this discussion between Dr. Bill Andrews – the Biotechnology Advisor of the U.S. Transhumanist Party / Transhuman Party – and U.S. Transhumanist Party / Transhuman Party Chairman Gennady Stolyarov II regarding recent news in the field of longevity (including pet longevity), techniques to slow down the rate of telomere shortening, changes to public perceptions of aging and longevity, transhumanism and technologies of life enhancement, and how to be rigorous and appropriately skeptical when evaluating various ideas and hypotheses in medicine.

Watch this discussion here and be on the lookout for a special visitor from a different species!

Become a member of the U.S. Transhumanist Party / Transhuman Party here for free, no matter where you reside.

Show Notes by Brent Nally

0:35 Dr. Andrews links:

Facebook: https://facebook.com/telomere.bill.andrews;

Linkedin: https://linkedin.com/in/william-h-andrews-5455b45/;

Wikipedia: https://en.wikipedia.org/wiki/William_H._Andrews_(biologist);

Sierra Sciences Website: https://sierrasci.com/;

Sierra Sciences YouTube Channel: https://www.youtube.com/channel/UCB9UFIxyD9VUHjuNQzpLzeA

1:08 Brent’s RAADfest 2019 YouTube playlist. Go to RAADfest primarily to network https://www.raadfest.com/

2:35 USTP concluded its presidential primary elections: watch Gennady Stolyarov II & Johannon Ben Zion at RAADfest 2019; watch Brent interview Mr. Ben Zion at RAADfest 2019; watch Brent interview Mr. Ben Zion and his VP running mate Charlie Kam at RAADfest 2019.

3:10 Bill’s dog Dash makes his cameo appearance.

4:35 Long-distance running and recovery.

7:20 Bill hosted a pet-longevity panel at RAADfest 2019.

12:15 Quacks and charlatans have discredited human longevity for centuries.

13:26 How has the public’s perception of human aging changed in the last decade?

15:10 Buy Bill’s 2 books: Curing Aging and Telomere Lengthening. See Brent’s book review of Telomere Lengthening: Curing all diseases including cancer & aging by Dr. Bill Andrews

15:25 Inflammation is the number one cause of human aging.

16:47 Do fun activities, meditate, practice yoga, eat a healthy diet, reduce stress to decrease the rate of telomere shortening.

18:48 Caldwell Esselstyn – Wikipedia

19:10 Watch Brent’s interview with Dr. Sandy Kaufmann.

21:33 Funding is needed to cure human aging and all chronic diseases.

24:03 Bill is hoping the telomerase gene therapy clinical study by Libella Gene Therapeutics (which is scheduled to start in November 2019) will show age reversal in the human Alzheimer’s patient in every measurable way.

24:18 Mice telomerase gene therapy study by Dr. by Ron DePinho

26:13 Animals age in different ways.

30:35 Life enhancement should be our focus.

33:08 Most humans living in the 1st world have been transhumanists for quite some time.

35:38 Nanobots

38:02 Get involved in the longevity movement in any way you can – follow thought leaders; donate.

39:40 Dr. Jason Williams

40:30 A race to cure human aging is a great idea to educate people.

43:26 Watch Brent’s interview with USTP Presidential candidate Johannon Ben Zion.

45:15 Spinal-cord repair, prosthetics, stem cells, etc.

51:01 Bill is impressed by stem-cell therapies but warns of charlatans. Watch Brent’s playlist on stem cells.

52:38 Use PubMed to do a meta-analysis of scientific peer-reviewed studies.

“Shattered” – Art by Laura Katrin Weston, a.k.a. Katrin Brunier

“Shattered” – Art by Laura Katrin Weston, a.k.a. Katrin Brunier

Laura Katrin Weston


Commentary by Gennady Stolyarov II: “Shattered” is a print by Dr. Laura Katrin Weston, a.k.a. Katrin Brunier, the original exemplar which I received in November 2017 due to my donation to the successful MouseAge crowdfunding campaign by Lifespan.io. Along with the three other artworks that I acquired from Dr. Weston – “Teeming”, “Graceful”, and “Squeak” – this print is featured as part of my Longevity Wall.

This work depicts how the forces of ruin can lead once-ornate and beautiful things to become eroded and deteriorated. This process, unfortunately, afflicts human organisms and minds as well, causing much of value to be lost or at least faded with time. Even with age, there remain in everything and everyone traces of the former splendor that can yet potentially be reclaimed – if humanity reconsiders its priorities and decisively commits to the war on ruin, including the quest to overcome aging and death.

Artist’s Description: “Time ravages even the greatest of minds, shattering them into a chaotic cloud of misfired potential. Once simple tasks become impossible, we become unable to live without aid, to live for ourselves any longer.

“I don’t know about you… But I don’t want that future. We have the power to change that. All we need is more support.”

You can find more work by Dr. Laura Katrin Weston at the Katrin Brunier Gallery, an Ethical Investment-Grade Art Gallery for the Neo-Renaissance Era (see its Instagram page). Proceeds from art sales at the Katrin Brunier Gallery will go to support causes such as medical research and conservation.

What It Will Be Like to Be an 85-Year-Old in the 2070s – Article by Scott Emptage

What It Will Be Like to Be an 85-Year-Old in the 2070s – Article by Scott Emptage

Scott Emptage


I will be 85 sometime in the early 2070s. It seems like a mirage, an impossible thing, but the future eventually arrives regardless of whatever you or I might think about it. We all have a vision of what it is to be 85 today, informed by our interactions with elder family members, if nothing else. People at that age are greatly impacted by aging. They falter, their minds are often slowed. They are physically weak, in need of aid. Perhaps that is why we find it hard to put ourselves into that position; it isn’t a pleasant topic to think about. Four decades out into the future may as well be a science-fiction novel, a faraway land, a tale told to children, for all the influence it has on our present considerations. There is no weight to it.

When I am 85, there will have been next to no senescent cells in my body for going on thirty years. I bear only a small fraction of the inflammatory burden of older people of past generations. I paid for the products of companies descended from Oisin Biotechnologies and Unity Biotechnology, every few years wiping away the accumulation of senescent cells, each new approach more effective than the last. Eventually, I took one of the permanent gene therapy options, made possible by biochemical discrimination between short-term beneficial senescence and long-term harmful senescence, and then there was little need for ongoing treatments. Artificial DNA machinery floats in every cell, a backup for the normal mechanisms of apoptosis, triggered by lingering senescence.

When I am 85, the senolytic DNA machinery will be far from the only addition to my cells. I underwent a half dozen gene therapies over the years. I picked the most useful of the many more that were available, starting once the price fell into the affordable-but-painful range, after the initial frenzy of high-cost treatments subsided into business as usual. My cholesterol transport system is enhanced to attack atherosclerotic lesions, my muscle maintenance and neurogenesis operate at levels far above what was once a normal range for my age, and my mitochondria are both enhanced in operation and well-protected against damage by additional copies of mitochondrial genes backed up elsewhere in the cell. Some of these additions were rendered moot by later advances in medicine, but they get the job done.

When I am 85, my thymus will be as active as that of a 10-year-old child. Gene and cell therapies were applied over the past few decades, and as a result my immune system is well-gardened, in good shape. A combination of replacement hematopoietic stem cells, applied once a decade, the enhanced thymus, and periodic targeted destruction of problem immune cells keeps at bay most of the age-related decline in immune function, most of the growth in inflammation. The downside is that age-related autoimmunity has now become a whole lot more complex when it does occur, but even that can be dealt with by destroying and recreating the immune system. By the 2030s this was a day-long procedure with little accompanying risk, and the price fell thereafter.

When I am 85, atherosclerosis will be curable, preventable, and reversible, and that will have been the case for a few decades. There are five or six different viable approaches in the marketplace, all of which basically work. I used several of their predecessors back in the day, as well. Most people in the wealthier parts of the world have arteries nearly free from the buildup of fat and calcification. Cardiovascular disease with age now has a very different character, focused more failure of tissue maintenance and muscle strength and the remaining small portions of hypertension that are still problematic for some individuals. But that too can be effectively postponed through a variety of regenerative therapies.

When I am 85, there will be an insignificant level of cross-linking in most of my tissues, as was the case since my early 60s. My skin has the old-young look of someone who went a fair way down the path before being rescued. Not that I care much about that – I’m much more interested in the state of my blood vessels, the degree to which they are stiff and dysfunctional. That is why removal of cross-links is valuable. That is the reason to keep on taking the yearly treatments of cross-link breakers, or undergo one of the permanent gene therapies to have your cells produce protective enzymes as needed.

When I am 85, I will have a three-decade patchwork history of treatments to partially clear this form of amyloid or that component of lipofuscin. I will not suffer Alzheimer’s disease. I will not suffer any of the common forms of amyloidosis. They are controlled. There is such a breadth of molecular waste, however: while the important ones are addressed, plenty more remain. This is one of the continuing serious impacts to the health of older individuals, and a highly active area of research and development.

When I am 85, I will be the experienced veteran of several potentially serious incidences of cancer, all of which were identified early and eradicated by a targeted therapy that produced minimal side-effects. The therapies evolve rapidly over the years: a bewildering range of hyper-efficient immunotherapies, as well as treatments that sabotage telomere lengthening or other commonalities shared by all cancer cells. They were outpatient procedures, simple and quick, with a few follow-up visits, so routine that they obscured the point that I would be dead several times over without them. The individual rejuvenation technologies I availed myself of over the years were narrowly focused, not perfect, and not available as early as I would have liked. Cancer is an inevitable side-effect of decades of a mix of greater tissue maintenance and unrepaired damage.

Do we know today what the state of health of a well-kept 85-year-old will be in the 2050s? No. It is next to impossible to say how the differences noted above will perform in the real world. They are all on the near horizon, however. The major causes of age-related death today will be largely controlled and cured in the 2050s, at least for those in wealthier regions. If you are in your 40s today, and fortunate enough to live in one of those wealthier region, then it is a given that you will not die from Alzheimer’s disease. You will not suffer from other common age-related amyloidosis conditions. Atherosclerosis will be reliably controlled before it might kill you. Inflammatory conditions of aging will be a shadow of what they once were, because of senolytic therapies presently under development. Your immune system will be restored and bolstered. The stem cells in at least your bone marrow and muscles will be periodically augmented. The cross-links that cause stiffening of tissues will be removed. Scores of other issues in aging process, both large and small, will have useful solutions available in the broader medical marketplace. We will all live longer and in better health as a result, but no-one will be able to say for just how long until this all is tried.

Scott Emptage is an anti-aging activist in the United Kingdom. 

U.S. Transhumanist Party Discussion Panel on Life Extension – February 18, 2017

U.S. Transhumanist Party Discussion Panel on Life Extension – February 18, 2017

 

The New Renaissance Hat

Listen to and download the audio recording of this panel discussion at http://rationalargumentator.com/USTP_Life_Extension_Panel.mp3 (right-click to download).

For its second expert panel, the U.S. Transhumanist Party invited Bill Andrews, Aubrey de Grey, Ira Pastor, and Ilia Stambler to discuss life extension and the quest to reverse biological aging through science and technology.

This two-hour panel discussion, moderated by Chairman Gennady Stolyarov II, took place on Saturday, February 18, 2017, at 10 a.m. U.S. Pacific Time. In this interactive venue, many opportunities for fresh discourse arose on the possibility of achieving dramatically greater longevity within our lifetimes. The substance of the discussion begins at 4:25 in the recording.

Questions the panelists considered include the following:

(i) How would you characterize the current state of efforts to reverse senescence / lengthen human lifespans?
(ii) How does progress in the areas of research you have delved into compare to your expectations approximately 10 to 15 years ago?
(iii) What are the most significant challenges and obstacles that you perceive to exist in the way of achieving serious reversal of biological aging?
(iv) What key technologies and methods of delivering treatments to patients would need to be developed in order for longevity escape velocity to be affordably achieved society-wide?
(v) What political reforms and societal / attitudinal changes would you advocate to accelerate the arrival of effective treatments to reverse biological aging and lengthen lifespans?
(vi) Are you concerned about any current political trends and how they might affect the progress of research into combating biological aging?
(vii) What can laypersons who are sympathetic to your goals do in order to hasten their realization? How can the effort to defeat aging become as popular and widely supported as efforts to defeat cancer and ALS are today?
(viii) What lessons can the history of anti-aging research offer to those who seek to advocate and help achieve effective scientific breakthroughs in this area in the coming years and decades?

Become a member of the U.S. Transhumanist Party for free. Apply here.

References

Genetic stabilization of transthyretin, cerebrovascular disease, and life expectancy” – Paper by Louise S. Hornstrup, Ruth Frikke-Schmidt, Børge G. Nordestgaard and Anne Tybjærg-Hansen. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33:1441-1447, Originally published May 15, 2013.

Recognizing Degenerative Aging as a Treatable Medical Condition: Methodology and Policy” – Paper by Ilia Stambler. Aging and Disease.

***

Panelists

Dr. Bill Andrews is the President and CEO of Sierra Sciences – http://www.sierrasci.com/. As a scientist, athlete, and executive, he continually pushes the envelope and challenges convention. In his 35-year biotech career, he has focused the last 23 years on finding ways to extend the human lifespan and healthspan through telomere maintenance. As one of the principal discoverers of both the RNA and protein components of human telomerase, Dr. Andrews was awarded 2nd place as “National Inventor of the Year” in 1997.

Dr. Aubrey de Grey is the biomedical gerontologist who researched the idea for and founded SENS Research Foundation – http://www.sens.org/. He received his BA in Computer Science and Ph.D. in Biology from the University of Cambridge in 1985 and 2000, respectively. Dr. de Grey is Editor-in-Chief of Rejuvenation Research, is a Fellow of both the Gerontological Society of America and the American Aging Association, and sits on the editorial and scientific advisory boards of numerous journals and organizations.

Ira Pastor has 30 years of experience across multiple sectors of the pharmaceutical industry, including pharmaceutical commercialization, biotech drug development, managed care, distribution, OTC, and retail. He is the CEO of BioQuark, Inc. – http://www.bioquark.com/ – and Executive Chairman of ReAnima Advanced Biosciences – https://reanima.tech/.

Dr. Ilia Stambler is a researcher at Bar Ilan University, Israel. His research focuses on the historical and social implications of aging and life-extension research. He is the author of A History of Life-extensionism in the Twentieth Century – www.longevityhistory.com. He is actively involved in advocacy for aging and longevity research – www.longevityforall.org.

Fundraiser by Lifespan.io & CellAge: Targeting Senescent Cells With Synthetic Biology

Fundraiser by Lifespan.io & CellAge: Targeting Senescent Cells With Synthetic Biology

The New Renaissance HatCellAge
******************************

Editor’s Note: The Rational Argumentator and the U.S. Transhumanist Party support Lifespan.io and CellAge in their work towards groundbreaking scientific life-extension research. Finding a way to repair age-related damage to senescent cells would be a fundamental breakthrough for transhumanism, and we offer our best wishes and support for those striving towards these new technologies.

               ~ Gennady Stolyarov II, Editor-in-Chief, The Rational Argumentator, December 11, 2016

From Lifespan.io and CellAge:

Our society has never aged more rapidly – one of the most visible symptoms of the changing demographics is the exponential increase in the incidence of age-related diseases, including cancer, cardiovascular diseases and osteoarthritis. Not only does aging have a negative effect on the quality of life among the elderly but it also causes a significant financial strain on both private and public sectors. As the proportion of older people is increasing so is health care spending. According to a WHO analysis, the annual number of new cancer cases is projected to rise to 17 million by 2020, and reach 27 million by 2030. Similar trends are clearly visible in other age-related diseases such as cardiovascular disease. Few effective treatments addressing these challenges are currently available and most of them focus on a single disease rather than adopting a more holistic approach to aging.

Recently a new approach which has the potential of significantly alleviating these problems has been validated by a number of in vivo and in vitro studies. It has been demonstrated that senescent cells (cells which have ceased to replicate due to stress or replicative capacity exhaustion) are linked to many age-related diseases. Furthermore, removing senescent cells from mice has been recently shown to drastically increase mouse healthspan (a period of life free of serious diseases).

Here at CellAge we are working hard to help translate these findings into humans!

CellAge, together with a leading synthetic biology partner, Synpromics, are poised to develop a technology allowing for the identification and removal of harmful senescent cells. Our breakthrough technology will benefit both the scientific community and the general public.

In short, CellAge is going to develop synthetic promoters which are specific to senescent cells, as promoters that are currently being used to track senescent cells are simply not good enough to be used in therapies. The most prominently used p16 gene promoter has a number of limitations, for example. First, it is involved in cell cycle regulation, which poses a danger in targeting cells which are not diving but not senescent either, such as quiescent stem cells. Second, organism-wide administration of gene therapy might at present be too dangerous. This means senescent cells only in specific organs might need to be targeted and p16 promoter does not provide this level of specificity. Third, the p16 promoter is not active in all senescent cells. Thus, after therapies utilizing this promoter, a proportion of senescent cells would still remain. Moreover, the p16 promoter is relatively large (2.1kb), making it difficult to incorporate in present gene therapy vehicles. Lastly, to achieve the intended therapeutic effect the strength of p16 promoter to drive therapeutic effect might not be high enough.

CellAge will be constructing a synthetic promoter which has a potential to overcome all of the mentioned limitations. A number of gene therapy companies, including uniQure, AGTC and Avalanche Biotech have successfully targeted other types of cells using this technology. With your help, we will be able to use same technology to develop tools and therapies for accurate senescent cell targeting.

UNITY Biotechnology Raises $116M for Senescent Cell Clearance Development – Article by Reason

UNITY Biotechnology Raises $116M for Senescent Cell Clearance Development – Article by Reason

The New Renaissance HatReason
******************************

The whispers of late have had it that UNITY Biotechnology was out raising a large round of venture funding, and their latest press release shows that this was indeed the case. The company, as you might recall, is arguably the more mainstream of the current batch of startups targeting the clearance of senescent cells as a rejuvenation therapy. The others include Oisin Biotechnologies, SIWA Therapeutics, and Everon Biosciences, all with different technical approaches to the challenge. UNITY Biotechnology is characterized by a set of high profile relationships with noted laboratories, venture groups, and big names in the field, and, based on the deals they are doing, appear to be focused on building a fairly standard drug development pipeline: repurposing of apoptosis-inducing drug candidates from the cancer research community to clear senescent cells, something that is being demonstrated with various drug classes by a range of research groups of late. Senescent cells are primed to apoptosis, so a nudge in that direction provided to all cells in the body will have little to no effect on normal cells, but tip a fair proportion of senescent cells into self-destruction. Thus the UNITY Biotechnology principals might be said to be following the standard playbook to build the profile of a hot new drug company chasing a hot new opportunity, and clearly they are doing it fairly well so far.

UNITY Biotechnology Announces $116 Million Series B Financing

Quote:

UNITY Biotechnology, Inc. (“UNITY”), a privately held biotechnology company creating therapeutics that prevent, halt, or reverse numerous diseases of aging, today announced the closing of a $116 million Series B financing. The UNITY Series B financing ranks among the largest private financings in biotech history and features new investments from longtime life science investors ARCH Venture Partners, Baillie Gifford, Fidelity Management and Research Company, Partner Fund Management, and Venrock. Other investors include Bezos Expeditions (the investment vehicle of Jeff Bezos) and existing investors WuXi PharmaTech and Mayo Clinic Ventures. Proceeds from this financing will be used to expand ongoing research programs in cellular senescence and advance the first preclinical programs into human trials.

The financing announcement follows the publication of research that further demonstrates the central role of senescent cells in disease. The paper, written by UNITY co-founders Judith Campisi and Jan van Deursen and published today, describes the central role of senescent cells in atherosclerotic disease and demonstrates that the selective elimination of senescent cells holds the promise of treating atherosclerosis in humans. In animal models of both early and late disease, the authors show that selective elimination of senescent cells inhibits the growth of atherosclerotic plaque, reduces inflammation, and alters the structural characteristics of plaque such that higher-risk “unstable” lesions take on the structural features of lower-risk “stable” lesions. “This newly published work adds to the growing body of evidence supporting the role of cellular senescence in aging and demonstrates that the selective elimination of senescent cells is a promising therapeutic paradigm to treat diseases of aging and extend healthspan. We believe that we have line of sight to slow, halt, or even reverse numerous diseases of aging, and we look forward to starting clinical trials with our first drug candidates in the near future.”

So this, I think, bodes very well for the next few years of rejuvenation research. It indicates that at least some of the biotechnology venture community understands the likely true size of the market for rejuvenation therapies, meaning every human being much over the age of 30. It also demonstrates that there is a lot of for-profit money out there for people with credible paths to therapies to treat the causes of aging. It remains frustrating, of course, that it is very challenging to raise sufficient non-profit funds to push existing research in progress to the point at which companies can launch. This is a problem throughout the medical research and development community, but it is especially pronrounced when it comes to aging. The SENS view of damage repair, which has long incorporated senescent cell clearance, is an even tinier and harder sell within the aging research portfolio – but one has to hope that funding events like this will go some way to turn that around.

From the perspective of being an investor in Oisin Biotechnologies, I have to say that this large and very visible flag planted out there by the UNITY team is very welcome. The Oisin team should be able to write their own ticket for their next round of fundraising, given that the gene therapy technology they are working on has every appearance of being a superior option in comparison to the use of apoptosis-inducing drugs: more powerful, more configurable, and more adaptable. When you are competing in a new marketplace, there is no such thing as too much validation. The existence of well-regarded, well-funded competitors is just about the best sort of validation possible. Well-funded competitors who put out peer-reviewed studies on a regular basis to show that the high-level approach you and they are both taking works really well is just icing on the cake. Everyone should have it so easy. So let the games commence! Competition always drives faster progress. Whether or not I had skin in this game, it would still be exciting news. The development of rejuvenation therapies is a game in which we all win together, when new treatments come to the clinic, or we all lose together, because that doesn’t happen fast enough. We can and should all of us be cheering on all of the competitors in this race. The quality and availability of the outcome is all that really matters in the long term. Money comes and goes, but life and health is something to be taken much more seriously.

Now with all of that said, one interesting item to ponder in connection to this round of funding for UNITY is the degree to which it reflects the prospects for cancer therapies rather than the prospects for rejuvenation in the eyes of the funding organizations. In other words, am I being overly optimistic in reading this as a greater understanding of the potential for rejuvenation research in the eyes of the venture community? It might be the case that the portions of the venture community involved here understand the market for working cancer drugs pretty well, and consider that worth investing in, with the possibility of human rejuvenation as an added bonus, but not one that is valued appropriately in their minds. Consider that UNITY Biotechnology has partnered with a noted cancer therapeutics company, and that the use of drugs to inducing apoptosis is a fairly well established approach to building cancer treatments. That is in fact why there even exists a range of apoptosis-inducing drugs and drug candidates for those interested in building senescent cell clearance therapies to pick through. Further, the presence of large numbers of senescent cells does in fact drive cancer, and modulating their effects (or removing them) to temper cancer progress is a topic under exploration in the cancer research community. So a wager on a new vision, or a wager on the present market? It is something to think about.

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries.
***
This work is reproduced here in accord with a Creative Commons Attribution license. It was originally published on FightAging.org.
An Example of the Glaring Lack of Ambition in Aging Research – Post by Reason

An Example of the Glaring Lack of Ambition in Aging Research – Post by Reason

The New Renaissance HatReason
******************************

The mainstream of aging research, at least in public, is characterized by a profound lack of ambition when it comes to treating aging as a medical condition. Researchers talk about slightly altering the trajectory of aging as though that is the absolute most that is possible, the summit of the mountain, and are in many cases ambivalent when it comes to advocating for even that minimal goal. It is this state of affairs that drove Aubrey de Grey and others into taking up advocacy and research, given that there are clear paths ahead to rejuvenation, not just a slight slowing of aging, but halting and reversing the causes of aging. Arguably embracing rejuvenation research programs would in addition cost less and take a much shorter span of time to produce results, since these programs are far more comprehensively mapped out than are efforts to produce drugs to alter the complex operations of metabolism so as to slightly slow the pace at which aging progresses. It is most frustrating to live in a world in which this possibility exists, yet is still a minority concern in the research community. This article is an example of the problem, in which an eminent researcher in the field takes a look at a few recently published books on aging research, and along the way reveals much about his own views on aging as an aspect of the human condition that needs little in the way of a solution. It is a terrible thing that people of this ilk are running the institutes and the funding bodies: this is a field crying out for disruption and revolution in the name of faster progress towards an end to aging.

How can we overcome our niggling suspicion that there is something dubious, if not outright wrong, about wanting to live longer, healthier lives? And how might we pursue longer lives without at the same time falling prey to quasiscientific hype announcing imminent breakthroughs? In order to understand why aging is changing, and what this means for our futures, we need to learn more about the aging process itself. As a biologist who specializes in aging, I have spent more than four decades on a quest to do exactly this. Not only have I asked why aging should occur at all (my answer is encapsulated in a concept called disposability theory), but I have also sought to understand the fastest-growing segment of the population – those aged 85 and above. The challenges inherent in understanding and tackling the many dimensions of aging are reflected in a clutch of new books on the topic. Are these books worth reading? Yes and no. They take on questions like: Can we expect increases in human longevity to continue? Can we speed them up? And, on the personal level, what can we do to make our own lives longer and healthier? If nothing else, these books and their varied approaches reveal how little we actually know.

To find out more about factors that can influence our individual health trajectories across ever-lengthening lives, my colleagues and I began, in 2006, the remarkable adventure of the still ongoing Newcastle 85+ Study, an extremely detailed investigation of the complex medical, biological, and social factors that can affect a person’s journey into the outer reaches of longevity. For each individual, we determined whether they had any of 18 age-related conditions (e.g., arthritis, heart disease, and so on). Sadly, not one of our 85-year-olds was free of such illnesses. Indeed, three quarters of them had four or more diseases simultaneously. Yet, when asked to self-rate their health, an astonishing 78 percent – nearly four out of five – responded “good,” “very good,” or “excellent.” This was not what we had expected. The fact that these individuals had so many age-related illnesses fit, of course, with the popular perception of the very old as sadly compromised. But the corollary to this perception – that in advanced old age life becomes a burden, both to the individuals themselves and to others – was completely overturned. Here were hundreds of old people, of all social classes and backgrounds, enjoying life to the fullest, and apparently not oppressed by their many ailments.

As for my stake in the enterprise, I began investigating aging when I was in my early 20s – well before I had any sense of my own body aging. Quite simply, I was curious. What is this mysterious process, and why does it occur? Everything else in biology seems to be about making things work as well as they can, so how is it that aging destroys us? Now that I am growing older myself, my research helps me understand my own body and reinforces the drive to live healthily – to eat lightly and take exercise – though not at the cost of eliminating life’s pleasures. For all that I have learned about aging, my curiosity remains unabated. Indeed, it has grown stronger, partly because as science discovers more about the process, it reveals that there is ever more to learn, ever greater complexity to unravel, and partly because I am now my own subject: through new physical and psychological experiences in myself, I learn more about what older age is really like. I know all too well that the next phase of my life will bring unwelcome changes, and of course it must end badly. But the participants of the Newcastle 85+ Study have shown me that the journey will not be without interest.

Link: https://lareviewofbooks.org/article/want-live-longer-complicated-relationship-longevity/

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries.
***
This work is reproduced here in accord with a Creative Commons Attribution license. It was originally published on FightAging.org.
Criticizing Programmed Theories of Aging – Article by Reason

Criticizing Programmed Theories of Aging – Article by Reason

The New Renaissance HatReason
******************************

Today I’ll point out an open-access critique of programmed aging theories by the originator of the disposable soma theory of aging, one of the modern views of aging as accumulated damage rather than programming. The question of how and why we age is wrapped in a lot of competing theory, but of great practical importance. Our biochemistry is enormously complex and incompletely mapped, and thus the processes of aging, which is to how exactly our biochemistry changes over time, and all of the relationships that drive that change, are also enormously complex and incompletely mapped. Nonetheless, there are shortcuts that can be taken in the face of ignorance: the fundamental differences between young and old tissue are in fact well cataloged, and thus we can attempt to reverse aging by treating these changes as damage and repairing them. If you’ve read through the SENS rejuvenation research proposals, well, that is the list. The research community may not yet be able to explain and model how exactly this damage progresses, interacts, and spreads from moment to moment, but that effort isn’t necessary to build repair therapies capable of rejuvenation. You don’t need to build a full model of the way in which paint cracks and peels in order to scrub down and repaint a wall, and building that model is a lot most costly than just forging ahead with the painting equipment.

The engineering point of view described above, simply getting on with the job when there is a good expectation of success, is somewhat antithetical to the ethos and culture of the sciences, which instead guides researchers to the primary goal of obtaining full understanding of the systems they study. In practice, of course, every practical application of the life sciences is created in a state of partial ignorance, but the majority of research groups are nonetheless oriented towards improving the grand map of the biochemistry of metabolism and aging rather than doing what can be done today to create rejuvenation therapies. Knowledge over action. If we had all the time in the world this would be a fine and golden ideal. Unfortunately we do not, which places somewhat more weight on making material progress towards the effective treatment of aging as a medical condition – ideally by repairing its causes.

But what are the causes of aging? The majority view in the research community is that aging is a process of damage accumulation. The normal operation of metabolism produces forms of molecular damage in cells and tissues, a sort of biological wear and tear – though of course the concept of wear and tear is somewhat more nuanced and complex in a self-repairing system. This damage includes such things as resilient cross-links that alter the structural properties of the extracellular matrix and toxic metabolic waste that clutters and harms long-lived cells. As damage accumulates, our cells respond in ways that are a mix of helpful and harmful, secondary and later changes that grow into a long chain of consequences and a dysfunctional metabolism that is a long way removed from the well-cataloged fundamental differences between old and young tissues. An old body is a complicated mess of interacting downstream problems. In recent years, however, a growing minority have suggested and theorized that aging is not caused by damage, but is rather a programmed phenomenon – that some portion of the what I just described as the chain of consequences, in particular epigenetic changes, are in fact the root cause of aging. In the programmed view of aging, epigenetic change causes dysfunction and damage, not the other way around. That these two entirely opposite views can exist is only possible because there is no good map of the detailed progression of aging – only disconnected snapshots and puzzle pieces. There is a lot of room to arrange the pieces in any way that can’t be immediately refuted on the basis of well-known past studies.

There are two ways to settle the debate of aging as damage versus aging as evolved program. The first is to produce that grand map of metabolism and aging, something that I suspect is at the least decades and major advances in life science automation removed from where we stand now. The other is to build therapies that produce large degrees of rejuvenation, enough of a difference to put it far beyond argument that the approach taken is the right one. That is not so far away, I believe, as the first SENS rejuvenation therapies are presently in the early stages of commercial development. I think that, even with the comparative lack of funding for this line of development, ten to twenty years from now the question will be settled beyond reasonable doubt. Meanwhile, the programmed-aging faction has become large enough and their positions coherent enough that the mainstream is beginning to respond substantially to their positions; I expect that this sort of debate will continue all the way up to and well past the advent of the first meaningful rejuvenation therapies, which at this point look to be some form of senescent cell clearance.

Can aging be programmed? A critical literature review – by Axel Kowald and Thomas B. L. Kirkwood

Quote:

Many people, coming new to the question of why and how aging occurs, are attracted naturally to the idea of a genetic programme. Aging is necessary, it is suggested, either as a means to prevent overcrowding of the species’ environment or to promote evolutionary change by accelerating the turnover of generations. Instead of programmed aging, however, the explanation for why aging occurs is thought to be found among three ideas all based on the principle that within iteroparous species (those that reproduce repeatedly, as opposed to semelparous species, where reproduction occurs in a single bout soon followed by death), the force of natural selection declines throughout the adult lifespan. This decline occurs because at progressively older ages, the fraction of the total expected reproductive output that remains in future, on which selection can act to discriminate between fitter and less-fit genotypes, becomes progressively smaller. Natural selection generally favours the elimination of deleterious genes, but if its force is weakened by age, and because fresh mutations are continuously generated, a mutation-selection balance results. The antagonistic pleiotropy theory suggests that a gene that has a benefit early in life, but is detrimental at later stages of the lifespan, can overall have a net positive effect and will be actively selected. The disposable soma theory is concerned with optimizing the allocation of resources between maintenance on the one hand and other processes such as growth and reproduction on the other hand. An organism that invests a larger fraction of its energy budget in preventing accumulation of damage to its proteins, cells and organs will have a slower rate of aging, but it will also have fewer resources available for growth and reproduction, and vice versa. Mathematical models of this concept show that the optimal investment in maintenance (which maximizes fitness) is always below the fraction that is necessary to prevent aging.

In recent years, there have been a number of publications claiming that the aging process is a genetically programmed trait that has some form of benefit in its own right. If this view were correct, it would be possible experimentally to identify the responsible genes and inhibit or block their action. This idea is, however, diametrically opposed to the mainstream view that aging has no benefit by its own and is therefore not genetically programmed. Because experimental strategies to understand and manipulate the aging process are strongly influenced by which of the two opinions is correct, we have undertaken here a comprehensive analysis of the specific proposals of programmed aging. On the principle that any challenge to the current orthodoxy should be taken seriously, our intention has been to see just how far the various hypotheses could go in building a convincing case for programmed aging.

This debate is not only of theoretical interest but has practical implications for the types of experiments that are performed to examine the mechanistic basis of aging. If there is a genetic programme for aging, there would be genes with the specific function to impair the functioning of the organism, that is to make it old. Under those circumstances, experiments could be designed to identify and inhibit these genes, and hence to modify or even abolish the aging process. However, if aging is nonprogrammed, the situation would be different; the search for genes that actively cause aging would be a waste of effort and it would be too easy to misinterpret the changes in gene expression that occur with aging as primary drivers of the senescent phenotype rather than secondary responses (e.g. responses to molecular and cellular defects). It is evident, of course, that genes influence longevity, but the nature of the relevant genes will be very different according to whether aging is itself programmed or not.

For various programmed theories of aging, we re-implemented computational models, developed new computational models, and analysed mathematical equations. The results fall into three classes. Either the ideas did not work because they are mathematically or conceptually wrong, or programmed death did evolve in the models but only because it granted individuals the ability to move, or programmed death did evolve because it shortened the generation time and thus accelerated the spread of beneficial mutations. The last case is the most interesting, but it is, nevertheless, flawed. It only works if an unrealistically fast-changing environment or an unrealistically high number of beneficial mutations are assumed. Furthermore and most importantly, it only works for an asexual mode of reproduction. If sexual reproduction is introduced into the models, the idea that programmed aging speeds up the spread of advantageous mutations by shortening the generation time does not work at all. The reason is that sexual reproduction enables the generation of offspring that combine the nonaging genotype of one parent with the beneficial mutation(s) found in the other parent. The presence of such ‘cheater’ offspring does not allow the evolution of agents with programmed aging.

In summary, all of the studied proposals for the evolution of programmed aging are flawed. Indeed, an even stronger objection to the idea that aging is driven by a genetic programme is the empirical fact that among the many thousands of individual animals that have been subjected to mutational screens in the search for genes that confer increased lifespan, none has yet been found that abolishes aging altogether. If such aging genes existed as would be implied by programmed aging, they would be susceptible to inactivation by mutation. This strengthens the case to put the emphasis firmly on the logically valid explanations for the evolution of aging based on the declining force of natural selection with chronological age, as recognized more than 60 years ago. The three nonprogrammed theories that are based on this insight (mutation accumulation, antagonistic pleiotropy, and disposable soma) are not mutually exclusive. There is much yet to be understood about the details of why and how the diverse life histories of extant species have evolved, and there are plenty of theoretical and experimental challenges to be met. As we observed earlier, there is a natural attraction to the idea that aging is programmed, because developmental programming underpins so much else in life. Yet aging truly is different from development, even though developmental factors can influence the trajectory of events that play out during the aging process. To interpret the full complexity of the molecular regulation of aging via the nonprogrammed theories of its evolution may be difficult, but to do it using demonstrably flawed concepts of programmed aging will be impossible.

Given that the author here has in the past been among those who dismissed the SENS initiative as an approach to treating aging by repairing damage, it is perhaps a little amusing to see him putting forward points such as this one: “despite the cogent arguments that aging is not programmed, efforts continue to be made to establish the case for programmed aging, with apparent backing from quantitative models. It is important to take such claims seriously, because challenge to the existing orthodoxy is the path by which science often makes progress.” Where was this version of the fellow ten years ago?

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries.
***
This work is reproduced here in accord with a Creative Commons Attribution license. It was originally published on FightAging.org.
Towards a Greater Knowledge of Mitochondrial DNA Damage in Aging – Article by Reason

Towards a Greater Knowledge of Mitochondrial DNA Damage in Aging – Article by Reason

The New Renaissance HatReason
******************************

Today I’ll point out a very readable scientific commentary on mutations in mitochondrial DNA (mtDNA) and the importance of understanding how these mutations spread within cells. This is a topic of some interest within the field of aging research, as mitochondrial damage and loss of function is very clearly important in the aging process. Mitochondria are, among many other things, the power plants of the cell. They are the evolved descendants of symbiotic bacteria, now fully integrated into our biology, and their primary function is to produce chemical energy store molecules, adenosine triphosphate (ATP), that are used to power cellular operations. Hundreds of mitochondria swarm in every cell, destroyed by quality control processes when damaged, and dividing to make up the numbers. They also tend to promiscuously swap component parts among one another, and sometimes fuse together.

Being the descendants of bacteria, mitochondria have their own DNA, distinct from the nuclear DNA that resides in the cell nucleus. This is a tiny remnant of the original, but a very important remnant, as it encodes a number of proteins that are necessary for the correct operation of the primary method of generating ATP. DNA in cells is constantly damaged by haphazard chemical reactions, and equally it is constantly repaired by a range of very efficient mechanisms. Unfortunately mitochondrial DNA isn’t as robustly defended as nuclear DNA. Equally unfortunately, some forms of mutation, such as deletions, seem able to rapidly spread throughout the mitochondrial population of a single cell, even as they make mitochondria malfunction. This means that over time a growing number of cells become overtaken by malfunctioning mitochondria and fall into a state of dysfunction in which they pollute surrounding tissues with reactive molecules. This can, for example, increase the level of oxidized lipids present in the bloodstream, which speeds up the development of atherosclerosis, a leading cause of death at the present time.

The question of how exactly some specific mutations overtake a mitochondrial population so rapidly is still an open one. There is no shortage of sensible theories, for example that it allows mitochondria to replicate more rapidly, or gives them some greater resistance to the processes of quality control that normally cull older, damaged mitochondria. The definitive proof for any one theory has yet to be established, however. In one sense it doesn’t actually matter all that much: there are ways to address this problem through medical technology that don’t require any understanding of how the damage spreads. The SENS Research Foundation, for example, advocates the path of copying mitochondrial genes into the cell nucleus, a gene therapy known as allotopic expression. For so long as the backup genes are generating proteins, and those proteins make it back to the mitochondria, the state of the DNA inside mitochondria doesn’t matter all that much. Everything should still work, and the present contribution of mitochondrial DNA damage to aging and age-related disease would be eliminated. At the present time there are thirteen genes to copy, a couple of which are in commercial development for therapies unrelated to aging, another couple were just this year demonstrated in the lab, and the rest are yet to be done.

Still, the commentary linked below is most interesting if you’d like to know more about the questions surrounding the issue of mitochondrial DNA damage and how it spreads. This is, as noted, a core issue in the aging process. The authors report on recent research on deletion mutations that might sway the debate on how these mutations overtake mitochondrial populations so effectively.

Expanding Our Understanding of mtDNA Deletions

A challenge of mtDNA genetics is the multi-copy nature of the mitochondrial genome in individual cells, such that both normal and mutant mtDNA molecules, including selfish genomes with no advantage for cellular fitness, coexist in a state known as “heteroplasmy.” mtDNA deletions are functionally recessive; high levels of heteroplasmy (more than 60%) are required before a biochemical phenotype appears. In human tissues, we also see a mosaic of cells with respiratory chain deficiency related to different levels of mtDNA deletion. Interestingly, cells with high levels of mtDNA deletions in muscle biopsies show evidence of mitochondrial proliferation, a compensatory mechanism likely triggered by mitochondrial dysfunction. In such circumstances, deleted mtDNA molecules in a given cell will have originated clonally from a single mutant genome. This process is therefore termed “clonal expansion.”

The accumulation of high levels of mtDNA deletions is challenging to explain, especially given that mitophagy should provide quality control to eliminate dysfunctional mitochondria. Studies in human tissues do not allow experimental manipulation, but large-scale mtDNA deletion models in C. elegans have proved to be helpful, showing some conserved characteristics that match the situation in humans, as well as some divergences. Researchers have used a C. elegans strain with a heteroplasmic mtDNA deletion to demonstrate the importance of the mitochondrial unfolded protein response (UPRmt) in allowing clonal expansion of mutant mtDNAs to high heteroplasmy levels. They demonstrate that wild-type mtDNA copy number is tightly regulated, and that the mutant mtDNA molecules hijack endogenous pathways to drive their own replication.

The data suggests that the expansion of mtDNA deletions involves nuclear signaling to upregulate the UPRmt and increase total mtDNA copy number. The nature of the mito-nuclear signal in this C. elegans model may have been the transcription factor ATFS-1 (activating transcription factor associated with stress-1), which fails to be imported by depolarized mitochondria, mediates UPRmt activation by mtDNA deletions. A long-standing hypothesis proposes that deleted mtDNA molecules clonally expand because they replicate more rapidly due to their smaller size. To address this question, researchers examined the behavior of a second, much smaller mtDNA deletion molecule. They found no evidence for a replicative advantage of the smaller genome, and clonal expansion to similar levels as the larger deletion. In human skeletal muscle, mtDNA deletions of different sizes also undergo clonal expansion to the same degree. Furthermore, point mutations that do not change the size of the total mtDNA molecule also successfully expand to deleterious levels, indicating that clonal expansion is not driven by genome size. Thus, similar mechanisms may be operating across organisms. In the worm, this involves mito-nuclear signaling and activation of the UPRmt.

There is some debate over interpretation of results. One paper indicates that UPRmt allows the mutant mtDNA molecules to accumulate by reducing mitophagy. Another demonstrates that the UPRmt induces mitochondrial biogenesis and promotes organelle dynamics (fission and fusion). Both papers show that by downregulating the UPRmt response, mtDNA deletion levels fall, which may allow a therapeutic approach in humans. Could there be a similar mechanism in humans, especially since some features detected in C. elegans are also present in human tissues, including the increase in mitochondrial biogenesis and the lack of relationship between mitochondrial genome size and expansion? It is likely that there will be a similar mechanism to preserve deletions since, as in the worm, deletions persist and accumulate in human tissues, despite an active autophagic quality-control process. Although the UPRmt has not been characterized in humans as it has in the worm, and no equivalent protein to ATFS-1 has been identified in mammals, proteins such as CHOP, HSP-60, ClpP, and mtHSP70 appear to serve similar functions in mammals as those in C. elegans and suggest that a similar mechanism may be present.

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries.
This work is reproduced here in accord with a Creative Commons Attribution license. It was originally published on FightAging.org.
G. Stolyarov II Interviews Demian Zivkovic Regarding the D.N.A. – Gene Therapies Congress

G. Stolyarov II Interviews Demian Zivkovic Regarding the D.N.A. – Gene Therapies Congress

The New Renaissance Hat
G. Stolyarov II and Demian Zivkovic
******************************

Mr. Stolyarov invited Demian Zivkovic, President of the Institute of Exponential Sciences (IES), to discuss the forthcoming Designing New Advances (D.N.A.) Gene Therapies Congress in Utrecht, The Netherlands.

The interview took place on Sunday, June 19, 2016, at 11 a.m. US Pacific Time. Watch the recording here.

The D.N.A. Congress is scheduled to occur on July 9, 2016, and will feature speakers such as Oliver Medvedik, Aubrey de Grey, Elizabeth Parrish, Keith Comito, and Tatjana Kochetkova. This event receives the strong endorsement of both The Rational Argumentator and the Nevada Transhumanist Party.

Read the announcement of the D. N. A. Congress here.

Contribute to the fundraiser for the D. N. A. Congress on Indiegogo  and Generosity.

DNA_Interview_CoverDemian Zivkovic is the president of the Institute of Exponential Sciences  (Facebook  / Meetup) – an international transhumanist think tank / education institute comprised of a group of transhumanism-oriented scientists, professionals, students, journalists, and entrepreneurs interested in the interdisciplinary approach to advancing exponential technologies and promoting techno-positive thought. He is also an entrepreneur and student of artificial intelligence and innovation sciences and management at the University of Utrecht.

Demian and the IES have been involved in several endeavors, such as organizing lectures on exponential sciences, interviewing experts such as Aubrey de Grey, joining several of Mr. Stolyarov’s futurism panels, and spreading Death is Wrong – Mr. Stolyarov’s illustrated children’s book on indefinite life extension – in The Netherlands.

Demian Zivkovic is a strong proponent of healthy life extension and cognitive augmentation. His interests include hyperreality, morphological freedom advocacy, postgenderism, and hypermodernism. He is currently working on his ambition of raising enough capital to make a real difference in life extension and transhumanist thought.