Browsed by
Tag: Fight Aging

Weak Evidence Against a Significant Role for Nuclear DNA Damage in Aging – Article by Reason

Weak Evidence Against a Significant Role for Nuclear DNA Damage in Aging – Article by Reason

The New Renaissance Hat
Reason
February 2, 2014
******************************

The nuclear DNA in our cells is surrounded by a panoply of exceedingly efficient quality control and repair machinery, but nonetheless damage occurs: individual cells suffer all sorts of mutations over time as molecules react with DNA or pieces are lost or reshuffled during replication. This is more pronounced in long-lived cells, such as those in the central nervous system, or the stem cell populations that support specific tissues.

Cancer spawns from nuclear DNA damage, and the risk of cancer grows greatly with age – not just because of growing damage to nuclear DNA, but also due to the decline of the immune system’s watchdogs and other related consequences of aging. But aside from cancer, does the accumulation of various forms of nuclear DNA damage scattered across our cells contribute meaningfully to dysfunction and decline? There is some debate on this topic, and while the consensus position is more or less “yes, of course,” there is at this point no experiment by which one can conclusively demonstrate that this is the case.

Today I’ll point you to an open-access study in which researchers compare DNA sequencing data from the blood of a pair of 40-year-old twins and a pair of 100-year old twins. Blood cells cycle into and out of circulation on a timescale of a few months, but we might take nuclear DNA damage in blood cells as being representative of the damage present in the population of hematopoietic stem cells that generated those blood cells.

Aging as Accelerated Accumulation of Somatic Variants: Whole-Genome Sequencing of Centenarian and Middle-Aged Monozygotic Twin Pairs

Quote:

It has been postulated that aging is the consequence of an accelerated accumulation of somatic DNA mutations and that subsequent errors in the primary structure of proteins ultimately reach levels sufficient to affect organismal functions. The technical limitations of detecting somatic changes and the lack of insight about the minimum level of erroneous proteins to cause an error catastrophe hampered any firm conclusions on these theories.In this study, we sequenced the whole genome of DNA in whole blood of two pairs of monozygotic (MZ) twins, 40 and 100 years old, by two independent next-generation sequencing (NGS) platforms (Illumina and Complete Genomics). Potentially discordant single-base substitutions supported by both platforms were validated extensively by Sanger, Roche 454, and Ion Torrent sequencing.

We demonstrate that the genomes of the two twin pairs are germ-line identical between co-twins, and that the genomes of the 100-year-old MZ twins are discerned by eight confirmed somatic single-base substitutions, five of which are within nucleotide substitutions can be detected, and that a century of life did not result in a large number of detectable somatic mutations in blood.

I would have expected more differences and larger differences to turn up, but, as the researchers note, it is impossible to detect mutations that have not spread to at least some degree. (In this case, that means spreading through the population of hematopoietic stem cells.) A next step might be a survey of whole-genome sequencing by tissue types in old twins, especially those with longer-lived cells, to see whether this low level of exhibited mutational damage is peculiar to blood or typical for most or all tissues.

Quote:

The number of somatic variants may be substantially larger but those present in smaller fractions of cells go undetected. Consistent, detectable somatic variation likely includes somatic mosaicism in blood generated during development or clonal expansion of mutations generated at any point during the lifetime. The frequency of these variants is limited in blood even after 100 years of life. In summary, this study shows that the number of detectable somatic variants in blood by using NGS is very low and that accumulation of somatic mutations is not necessarily a consequence of a century of life. Stochastic somatic variation occurring in less than 20% of cells will go undetected, however.

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries. 

This work is reproduced here in accord with a Creative Commons Attribution license. It was originally published on FightAging.org.

More Recent Coverage of SENS Research – Article by Reason

More Recent Coverage of SENS Research – Article by Reason

The New Renaissance Hat
Reason
January 31, 2014
******************************

SENS stands for the Strategies for Engineered Negligible Senescence, a research and development plan first assembled more than a decade ago by biomedical gerontologist Aubrey de Grey. This was a work of vision and synthesis: taking decades of research results from many diverse fields of medical research whose scientists had comparatively little contact with one another, and little interest in working on ways to treat aging, and pulling these results together into a convincing argument as to (a) which forms of cellular and molecular damage cause aging, and (b) how to go about developing the means of repair for this damage.

Aging is damage, and repair is rejuvenation. Sufficiently comprehensive implementations of SENS should not only prevent aging and age-related disease, but also reverse the effects of aging in the old. This isn’t a matter of hand-waving: the capabilities in molecular biology and research plans to build therapies are outlined in considerable detail at the SENS Research Foundation website and in related scientific papers. You should take a look if you haven’t recently. The estimated cost of developing this to the point of demonstration in mice is on a par with the total cost of development of a single drug: perhaps $1-2 billion over 10-20 years.

It is pleasing to chart the changing character of press coverage over the years for SENS rejuvenation research and its figurehead advocate and organizer Aubrey de Grey. In the past ten years of increasing support within the scientific community and an influx of millions of dollars in philanthropic funding for research, it has become ever harder for journalists to stick their heads in the sand and pretend that SENS is either fringe or not real science. The gatekeepers of the establishment are never kind to any form of change or progress in the early days.

Measured by budget the SENS Research Foundation is a presently a tenth of the size of the well-established and mainstream Buck Institute for Aging Research. This is still larger than a good many labs in the field, and funding for SENS research has grown considerably over the past few years. Skilled molecular biologists in numerous laboratories are working on aspects of the SENS program of development for rejuvenation therapies. This work is still at the level of building tools and foundations for later progress, but it is very much real, tangible medical research. This is a new and upcoming field, the future of medical science and aging.

Aubrey de Grey: Out to Defy Death

Quote:

Spend a moment asking yourself, “What is the world’s worst problem?”

Biomedical gerontologist Aubrey de Grey, Ph.D., has an answer that may be radically different from yours. For him, it’s aging, and he not only makes a convincing case for why this is so, but he’s devoting his life to doing something about it. Dr. de Grey is the founder of SENS, a research foundation that aims to help build the regenerative medicine industry, an industry that arguably has the best chance for curing the diseases of aging. Surprisingly, he’s having more success than the people who were calling him a maverick and a heretic five years ago ever imagined.

First they ignore you, then they laugh at you, then they fight you, then you win. To my eyes, things have made it to the early stages of the winning part of that saying these days, certainly insofar as the scientific community is concerned. (Much more remains to be done in order to sell the public on the idea that radical life extension is a real possibility and that the relevant research is important and should be supported.) SENS is far more than Aubrey de Grey nowadays: it’s his vision, but has grown to be shared quite widely. There are dozens of influential allied scientists and laboratories, a number of high-net-worth philanthropists providing support, many advocates, a SENS Research Foundation staff, fundraisers, and, of course, the numerous researchers working to build the tools needed for future rejuvenation treatments.

Quote:

The SENS Foundation is a public charity based in California, and its purpose is to fill a niche in the research funding chain. Private sector research, particularly in the drug industry, has funds to drive important research, but only after it’s clear that the odds of success are good, the time frame is reasonably short, and the potential for profit large. At the other end of the research spectrum, public sector research funding is available for basic research that doesn’t have an immediate commercial purpose.

However, in Dr. de Grey’s view, and his colleagues’ as well, there’s a midway point between the private sector funding and the public sector, and this midpoint is often neglected. Research that may yield incalculable commercial success (and public benefit as well), may be at such an early stage of development that it doesn’t yet attract commercial funders. “We exist to make sure that this kind of intermediate research is not neglected,” he says.

People no longer refer to Aubrey de Grey as a “maverick” or “heretic.” “These days, I’m more often called ‘controversial,'” he says, sounding pleased with this new characterization.

“Controversial,” after all can be translated as, “might be right.”

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries. 

This work is reproduced here in accord with a Creative Commons Attribution license. It was originally published on FightAging.org.

A Simpler Path to Creating Pluripotent Stem Cells – Article by Reason

A Simpler Path to Creating Pluripotent Stem Cells – Article by Reason

The New Renaissance Hat
Reason
January 31, 2014
******************************

An improvement on current methods of creating pluripotent stem cells has been in the news the past few days. It involves stressing cells with simple mechanisms, and is straightforward enough that I hear numerous laboratories and individual researchers have started in on trying it out immediately, as well as revisiting other variants of stressing cells to see what the outcome might be. The methodology is something that DIYbio enthusiasts could carry out as a weekend project with minimal cost and equipment, which is a great improvement over prior standard methods involving delivery of genes or similar operations.

As with all such potential infrastructure improvements, one pillar of importance is the reduction in cost and difficulty of research. When someone figures out a much cheaper way of achieving any particular goal, all further work that builds on that goal moves more rapidly: existing groups can do more, and new groups that previously couldn’t afford to join in now start work. Cell pluripotency is near the base of regenerative medicine and tissue engineering: ways to better achieve it accelerate the whole field.

As you can see, there are also other ramifications, however, such as for persistent reports of pluripotent stem cells isolated from adult tissues – VSELs and others – and the debate over difficulties in replicating that research.

Quote:

In 2006, Japanese researchers reported a technique for creating cells that have the embryonic ability to turn into almost any cell type in the mammalian body – the now-famous induced pluripotent stem (iPS) cells. In papers published this week, another Japanese team says that it has come up with a surprisingly simple method – exposure to stress, including a low pH – that can make cells that are even more malleable than iPS cells, and do it faster and more efficiently.

“It’s amazing. I would have never thought external stress could have this effect,” says Yoshiki Sasai. It took Haruko Obokata, a young stem-cell biologist at the same centre, five years to develop the method and persuade Sasai and others that it works. “Everyone said it was an artefact – there were some really hard days.”

The results could fuel a long-running debate. For years, various groups of scientists have reported finding pluripotent cells in the mammalian body. But others have had difficulty reproducing such findings. Obokata started the current project by looking at cells thought to be pluripotent cells isolated from the body. But her results suggested a different explanation: that pluripotent cells are created when the body’s cells endure physical stress.

Obokata has already reprogrammed a dozen cell types, including those from the brain, skin, lung and liver, hinting that the method will work with most, if not all, cell types. On average, she says, 25% of the cells survive the stress and 30% of those convert to pluripotent cells – already a higher proportion than the roughly 1% conversion rate of iPS cells.

Link: http://www.nature.com/news/acid-bath-offers-easy-path-to-stem-cells-1.14600

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries. 

This work is reproduced here in accord with a Creative Commons Attribution license. It was originally published on FightAging.org.

Why Prioritize SENS Research for Human Longevity? – Article by Reason

Why Prioritize SENS Research for Human Longevity? – Article by Reason

The New Renaissance Hat
Reason
December 29, 2013
******************************

Why do I vocally support rejuvenation research based on the Strategies for Engineered Negligible Senescence (SENS) over other forms of longevity science? Why do I hold the view that SENS and SENS-like research should be prioritized and massively funded? The short answer to this question is that SENS-derived medical biotechnology has a much greater expected utility – it will most likely produce far better outcomes, and at a lower cost – than other presently ongoing lines of research into creating greater human longevity.

What is SENS?

But firstly, what is SENS? It is more an umbrella collection of categories than a specific program, though it is the case that narrowly focused SENS research initiatives run under the auspices of the SENS Research Foundation. On the science side of the house, SENS is a synthesis of existing knowledge from the broad mainstream position regarding aging and the diseases of aging: that aging is caused by a stochastic accumulation of damage at the level of cells and protein machinery in and around these cells. SENS is a proposal, based on recent decades of research, as to which of the identified forms of damage and change in old tissues are fundamental – i.e. which are direct byproducts of metabolic operation rather than cascading effects of other fundamental damage. On the development side of the house, SENS pulls together work from many subfields of medical research to show that there are clear and well-defined ways to produce therapies that can repair, reverse, or make irrelevant these fundamental forms of biological damage associated with aging.

(You can read about the various forms of low-level damage that cause aging at the SENS Research Foundation website and elsewhere. This list includes: mitochondrial DNA mutations; buildup of resilient waste products inside and around cells; growing numbers of senescent and other malfunctioning cells; loss of stem cells; and a few others).

Present arguments within the mainstream of aging research are largely over the relative importance of damage type A versus damage type B, and how exactly the extremely complex interaction of damage with metabolism progresses – but not what that damage actually is. A large fraction of modern funding for aging research goes towards building a greater understanding this progression; certainly more than goes towards actually doing anything about it. Here is the thing, however: while understanding the dynamics of damage in aging is very much a work in progress, the damage itself is well known. The research community can accurately enumerate the differences between old tissue and young tissue, or an old cell and a young cell – and it has been a good number of years since anything new was added to that list.

If you can repair the cellular damage that causes aging, it doesn’t matter how it happens or how it affects the organism when it’s there. This is the important realization for SENS – that much of the ongoing work of the aging research community is largely irrelevant if the goal is to get to human rejuvenation as rapidly as possible. Enough is already known of the likely causes of aging to have a reasonable expectation of being able to produce laboratory demonstrations of rejuvenation in animal models within a decade or two, given large-scale funding.

Comparing Expected Values

Expected value drives human endeavor. What path ahead do we expect to produce the greatest gain? In longevity science the investment is concretely measured in money and time, and we might think of the expected value in terms of years of healthy life added by the resulting therapies. The cost of these therapies really isn’t much of a factor – all major medical procedures and other therapies tend to converge to similar costs over time, based on their category: consider a surgery versus an infusion versus a course of pills, for example, where it’s fairly obvious that the pricing derives from how much skilled labor is involved and how much care the patient requires as a direct result of the process.

On the input side, there are estimates for the cost in time and money to implement SENS therapies for laboratory mice. For the sake of keeping things simple, I’ll note that these oscillate around the figures of a billion dollars and ten years for the crash program of fully-funded research. A billion dollars is about the yearly budget of the NIA these days, give or take, which might be a third of all research funding directed towards aging – by some estimates, anyway, though this is a very hard figure to verify in any way. It’s by no means certain the that the general one-third/two-thirds split between government and private research funding extends to aging research.

On the output side, early SENS implementations would be expected to take an old mouse and double its remaining life expectancy – e.g. produce actual rejuvenation, actual repair, and reversal of the low-level damage that causes aging, with repeated applications at intervals producing diminishing but still measurable further gains. This is the thing about a rejuvenation therapy that works; you can keep on applying it to sweep up newly accruing damage.

So what other longevity science do we have to compare against? The only large running programs are those that have grown out of the search for calorie-restriction mimetic drugs. So there is the past decade or so of research into sirtuins, and there is growing interest in mTOR and rapamycin analogs that looks to be more of the same, but slightly better (though that is a low bar to clear).

In the case of sirtuins, money has certainly flowed. Sirtris itself sold for ~$700 million, and it’s probably not unreasonable to suggest that a billion dollars have gone into broader sirtuin-related research and development over the past decade. What does the research community have to show for that? Basically nothing other than an increased understanding of some aspects of metabolism relating to calorie restriction and other adaptations that alter lifespan in response to environmental circumstances. Certainly no mice living longer in widely replicated studies as is the case for mTOR and rapamycin – the sirtuin results and underlying science are still much debated, much in dispute.

The historical ratio of dollars to results for any sort of way to manipulate our metabolism to slow aging is exceedingly poor. The thing is, this ratio shouldn’t be expected to get all that much better. Even if marvelously successful, the best possible realistic end result of a drug that slows aging based on what is known today – say something that extracts the best side of mTOR manipulation with none of the side-effects of rapamycin – is a very modest gain in human longevity. It can’t greatly repair or reverse existing damage, it can’t much help those who are already old become less damaged, it will likely not even be as effective as actual, old-fashioned calorie restriction. The current consensus is that calorie restriction itself is not going to add more than a few years to a human life – though it certainly has impressive health benefits.

(A sidebar: we can hope that one thing that ultimately emerges from all this research is an explanation as to how humans can enjoy such large health benefits from calorie restriction, commensurate with those seen in animals such as mice, without also gaining longer lives to match. But if just eating fewer calories while obtaining good nutrition could make humans reliably live 40% longer, I think that would have been noted at some point in the last few thousand years, or at least certainly in the last few hundred).

From this perspective, traditional drug research turned into longevity science looks like a long, slow slog to nowhere. It keeps people working, but to what end? Not producing significant results in extending human longevity, that’s for sure.

Ergo…

The cost of demonstrating that SENS is the right path or the wrong path – i.e. that aging is simply an accumulation of damage, and the many disparate research results making up the SENS vision are largely correct about which forms of change in aged tissue are the fundamental forms of damage that cause aging – is tiny compared to the cost of trying to safely eke out modest reductions in the pace of aging by manipulating metabolism via sirtuins or mTOR.

The end result of implementing SENS is true rejuvenation if aging is caused by damage: actual repair, actual reversal of aging. The end result of spending the same money and time on trying to manipulate metabolism to slow aging can already be observed in sirtuin research, and can reasonably be expected to be much the same the next time around the block with mTOR – it produces new knowledge and little else of concrete use, and even when it does eventually produce a drug candidate, it will likely be the case that you could do better yourself by simply practicing calorie restriction.

The expectation value of SENS is much greater than that of trying to slow aging via the traditional drug-discovery and development industry. Ergo the research and development community should be implementing SENS. It conforms to the consensus position on what causes aging, it costs far less than all other proposed interventions into the aging process, and the potential payoff is much greater.

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries. 

This work is reproduced here in accord with a Creative Commons Attribution license.  It was originally published on FightAging.org.

A Brace of Papers from the Longevity Genetics Community – Article by Reason

A Brace of Papers from the Longevity Genetics Community – Article by Reason

The New Renaissance Hat
Reason
December 29, 2013
******************************

You’ll find quite a few papers on longevity and genetics in the preprint queue of Current Vascular Phamacology at the moment. This is a portion of the output of that part of the research community focused on developing a full understanding of the molecular biology of how aging progresses and varies between individuals and species. Biology is fantastically complex, and obtaining that full understanding will be a much, much more challenging endeavor than merely successfully treating or reversing aging.

Treating and even curing aging are goals that might be achieved without a full understanding of exactly how aging progresses. Consider this: you don’t need anything even close to a full molecular model of the progression of rust to greatly extend the life of metal equipment through scrubbing and protective coating. Exactly the same argument about knowledge and action can be applied to biology and medicine. Knowing what the damage is and having a complete understanding of how that damage progresses to cause the visible symptoms of aging are two very different things, the latter much more complex than the former, and only the former actually needed to produce useful therapies.

Nonetheless, most of the present work and funding in the aging science community is focused on developing an understanding of how degenerative aging progresses, not on damage repair and treatment of aging. So most of the output of the research community looks much along the lines of these first few papers I’m going to point out today.

The Challenges in Moving from Ageing to Successful Longevity

Quote:

During the last decades survival has significantly improved and centenarians are becoming a fast-growing group of the population. Genetic factors contribute to the variation of human life span by around 25%, which is believed to be more profound after 85 years of age. It is likely that multiple factors influence life span and we need answers to questions such as: 1) What does it take to reach 100?, 2) Do centenarians have better health during their lifespan compared with contemporaries who died at a younger age?, 3) Do centenarians have protective modifications of body composition, fat distribution and energy expenditure, maintain high physical and cognitive function, and sustained engagement in social and productive activities?, 4) Do centenarians have genes which contribute to longevity?, 5) Do centenarians benefit from epigenetic phenomena?, 6). Is it possible to influence the transgenerational epigenetic inheritance (epigenetic memory) which leads to longevity?, 7) Is the influence of nutrigenomics important for longevity?, 8) Do centenarians benefit more from drug treatment, particularly in primary prevention?, and, 9) Are there any potential goals for drug research?

Genes Of Human Longevity: An Endless Quest?

Quote:

Human longevity is a complex trait which genetics, epigenetics, environmental and stochasticity differently contribute to. To disentangle the complexity, our studies on genetics of longevity were, at the beginning, mainly focused on the extreme phenotypes, i.e. centenarians who escaped the major age-related diseases compared with cross sectional cohorts.

In association studies on candidate genes many SNPs, positively or negatively correlated with longevity have been identified. On the other hand, the identification of longevity-related genes does not explain the mechanisms of healthy aging and longevity, but it opens a huge amount of questions on epigenetic contribution, gene regulation and the interactions with essential genomes, i.e. mitochondrial DNA and microbiota.

Centenarian Offspring: a model for Understanding Longevity

Quote:

A main objective of current medical research is the improving of life quality of elderly people as priority of the continuous increase of ageing population. Accordingly, the research interest is focused on understanding the biological mechanisms involved in determining the positive ageing phenotype, i.e. the centenarian phenotype. Centenarians have been used as an optimal model for successful ageing. However, it is characterized by several limitations, i.e. the selection of appropriate controls for centenarians and the use itself of the centenarians as a suitable model for healthy ageing. Thus, the interest has been centered on centenarian offspring, healthy elderly people. They may represent a model for understanding exceptional longevity for the following reasons: to exhibit a protective genetic background, cardiovascular and immunological profile as well as a reduced rate of cognitive decline than age-matched people without centenarian relatives.

Phenotypes and Genotypes of High Density Lipoprotein Cholesterol in Exceptional Longevity

Quote:

A change in the lipoprotein profile is a metabolic hallmark of aging and has been the target for modern medical developments. Although pharmaceutical interventions aimed at lipid lowering substantially decrease the risk of cardiovascular disease, they have much less impact on mortality and longevity. Moreover, they have not affected death from other age-related diseases.

In this review we focus on high density lipoprotein (HDL) cholesterol, the levels of which are either elevated or do not decrease as would be expected with aging in centenarians, and which are associated with lower prevalence of numerous age-related diseases; thereby, suggesting a potential HDL-mediated mechanism for extended survival. We also provide an update on the progress of identifying longevity-mediating lipid genes, describe approaches to discover longevity genes, and discuss possible limitations. Implicating lipid genes in exceptional longevity may lead to drug therapies that prevent several age-related diseases, with such efforts already on the way.

It has to be said, however, that some areas of research are close enough to the development of actual rejuvenation treatments – those addressing at least some of the root cause damage of aging rather than downstream consequences – that even the scientific mainstream is coming around to the idea. The impact of cellular senescence on aging is one such field, as several obvious and existing applications of medical technology may aid in removal of the senescent cells that accumulate with age, and early work in mice confirms that such treatments should prove helpful:

Cellular Senescence in Ageing, Age-Related Disease and Longevity

Quote:

Cellular senescence is the state of permanent inhibition of cell proliferation. There is mounting evidence that senescent cells contribute to ageing and age-related disease by generating a low grade inflammation state (senescence-associated secretory phenotype-SASP). Even though cellular senescence is a barrier for cancer it can, paradoxically, stimulate development of cancer via proinflammatory cytokines. There is evidence that senescent vascular cells, both endothelial and smooth muscle cells, participate in atherosclerosis and senescent preadipocytes and adipocytes have been shown to lead to insulin resistance.

Thus, modulation of cellular senescence is considered as a potential pro-longevity strategy. It can be achieved in several ways like: elimination of selected senescent cells, epigenetic reprogramming of senescent cells, preventing cellular senescence or influencing the secretory phenotype. Some pharmacological interventions have already been shown to have promising activity in this field.

 

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries. 

This work is reproduced here in accord with a Creative Commons Attribution license.  It was originally published on FightAging.org.

Radical Life Extension Won’t Cause Resource Shortages – Article by Reason

Radical Life Extension Won’t Cause Resource Shortages – Article by Reason

The New Renaissance Hat
Reason
October 6, 2013
******************************

That overpopulation exists at all is one of the most prevalent delusions in the modern world: thanks to the environmentalist movement, a cause that has ascended near to the status of civic religion, the average fellow in the street thinks that there are too many people alive today, that resources are stretched to breaking point, that the future is one of Malthusian decline, and that horrible poverty in the third world is caused by the existence of too many people. All of these points are flat-out wrong. Humanity is wealthier and has greater access to resources today than at any time in history, the variety and amounts of available resources are growing at an accelerating pace due to technological progress, the earth could support many times more people than are alive today, and where there is poverty it exists due to terrible, predatory governance and the inhumanity of man – it exists due to waste and aggression amidst the potential for plenty.

Even this pro-longevity piece by George Dvorsky subscribes, as many do, to the false idea that somehow we are consuming too many resources and will run out. This is silly: resources are infinite, because through technological progress we constantly develop new ones. People live in an age of change, with each new decade clearly different from the last, and yet live under the assumption that everything will remain the same going forward. Being worried about running out of anything that we use today is like being worried about running out of candle wax in 1810, or running out of room for horse breeding operations in 1840, or running out of food in 1940. All false concerns, and all false for exactly the same reasons: we are not static consumers of resources, we are net producers of resources.

Quote:

Make no mistake, it’ll take us a long, long time to get there, but we’ll eventually find a way to halt the aging process. Owing to advanced medical, regenerative, and cybernetic technologies, future humans will enter into a state of “negligible senescence,” a condition marked by the cessation of aging and the onset of everlasting youth. It sounds utopian, but as biogerontologist Aubrey de Grey has repeatedly noted, it’s simply an engineering problem – one that’s not intractable.

I’ve been debating this issue for the better part of a decade, and I’ve heard virtually every argument there is to be said both in favor of and in condemnation of the possibility. I’m not going to go over all of them here. But without a doubt the single most prominent argument set against radical life extension is the issue of overpopulation and environmental sustainability.

As a final note, there’s a certain inevitability to radical life extension. It’s the logical conclusion to the medical sciences. So rather than futilely argue against it, we should come up with constructive solutions to ensure that it unfolds in the most non-disruptive way possible.

Link: http://io9.com/no-extreme-human-longevity-won-t-destroy-the-planet-1440148751

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries.  

This work is reproduced here in accord with a Creative Commons Attribution license.  It was originally published on FightAging.org.

The Last Generation to Die – Article by Reason

The Last Generation to Die – Article by Reason

The New Renaissance Hat
Reason
September 27, 2013
******************************

The last generation whose members will be forced into death by aging is alive today. It won’t be the youngest of us, born in the past few years – they, most likely, have thousands of years ahead of them. It won’t be the oldest of us either, as even under the plausible best of circumstances we are twenty to thirty years away from a widespread deployment of rejuvenation therapies based on the SENS research program. As to the rest of us, just who is left holding the short straw at the end of the day depends on the speed of progress in medical science: advocacy, fundraising, and the effectiveness of research and development initiatives. Persuasion and money are far more important at this early stage than worrying about how well the researchers are doing their jobs, however.

We live in a world in which the public is only just starting to come around to the idea that aging can be treated, and demonstrations of rejuvenation in the laboratory could be achieved in a crash program lasting ten to twenty years, at a comparatively small cost. But still, most people don’t care about living longer, and most people try not to think about aging, or the future of degeneration and sickness that awaits. They think it is inevitable, but that is no longer true. If you are in early middle age today in the first world, then you have a good shot at living for centuries if the world suddenly wakes up tomorrow and massive funding pours into rejuvenation research. You will age and die on a timescale little different from that of your parents if that awakening persistently fails to happen.

So, roll the dice, or help out and try to swing the odds in your favor. Your choice.

Crowdfunding on Kickstarter and related sites is still the new new thing, the shine not yet worn off. One of the truths that this activity reinforces is that it is far, far easier to raise funding for the next throwaway technological widget than for medical research projects aimed at the betterment of all humanity. Research crowdfunding is a tiny, distant moon orbiting the great mass of comics, games, and devices on Kickstarter, Indiegogo, and others. Hell, it’s easier to crowdfund a short film that points out how close human rejuvenation might be to the present day than it is to crowdfund a project to actually conduct a portion of that research. Is this a reflection of rationality? You decide, though it could be argued either way regarding whether a dollar given to raising awareness is more valuable than a dollar given to the researchers at this point in time. Both research and persuasion need to happen.

The Last Generation To Die – A Short Film

Quote:

Set in the future when science first begins to stop aging, a daughter tries to save her father from natural death. The story takes place roughly 30 years in the future at the moment when science has first figured out how to stop aging through genetics. It is framed around the gulf between generations that would occur with the first release of this technology. A daughter who works for a company called Aperion Life – the first to bring this new technology to the public – wants to save her aging father. She starts him on the trials but he soon stops coming. The film continues with the conflict rising between them as she wants him to live on with her while he feels a natural ending is more human.The film centers itself around the natural conflict that would exist at this divide. Upon developing this story, I’ve asked many people and I’ve found a pretty even 50/50 divide of opinions strongly on one side or the other- either they want to die naturally and believe there is beauty in finality, or they want to see what the future holds and have more time to explore and learn more in life. I’d like to turn the question to you… Which side are you on? Would you want to live on or die naturally?

I feel this is a film that needs to be made. Asking these questions in the form of art and story will help start the discussion. Our world is changing very fast and the rate of technology is speeding up. What does all of this mean for humanity? Everything we know, from a book to a play to a song, ends… What does it mean when there is no ending? Would we be more complacent? Would life be as meaningful? Is there more of a beauty in the way it has always been with our passing or is there more beauty in our bodies and minds staying fresh and alive for many, many years to come? What about social justice and overpopulation? Would life become boring after living on indefinitely or would you find it exhilarating to have time to learn new languages, instruments, subjects – to read more books, to love more – to live several lifetimes? Would it be worth it if some of your most loved friends or relatives passed on and wouldn’t live on with you? Are you interested in seeing what the future brings in technology and social evolution or are you happy to have contributed and be a part of it for a short time?

Tim Maupin’s Film, ‘The Last Generation to Die’, to Explore Longevity and Life Extension

Quote:

Chicago filmmaker Tim Maupin launched a Kickstarter for a short film titled, “The Last Generation to Die.” Maupin thinks now is a great time to start a conversation about life extension. And he’s right. The idea that within decades a genetic fountain of youth may plausibly reverse the aging process, even indefinitely stave off death, seems to be rising up in pop culture. Maupin’s Kickstarter has so far raised over $15,000 – $6,000 more than its initial funding goal. Encouraged by the positive response, they’re dreaming bigger and hope to fund a stretch goal of $25,000 in the last 10 days of the campaign.

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries.  

This work is reproduced here in accord with a Creative Commons Attribution license.  It was originally published on FightAging.org.

Editor’s Note from G. Stolyarov II: I am proud to have donated $50 to help make the film The Last Generation to Die a success. I encourage all readers to donate during the remaining nine days in which the Kickstarter project is open to accepting funds.

Aubrey de Grey Comments on the “Hallmarks of Aging” Paper – Article by Reason

Aubrey de Grey Comments on the “Hallmarks of Aging” Paper – Article by Reason

The New Renaissance Hat
Reason
September 8, 2013
******************************

The Hallmarks of Aging paper was published earlier this year. It is an outline by a group of noted researchers that divides up degenerative aging into what they believe are its fundamental causes, with extensive references to support their conclusions, and proposes research strategies aimed at building the means to address each of these causes. This is exactly what we want to see more of in the aging research community: deliberate, useful plans that follow the Strategies for Engineered Negligible Senescence (SENS) model of approaching aging.

Read through the Hallmarks of Aging and you’ll see that it is essentially a more mild-mannered and conservative restatement of the SENS approach to aging – written after more than ten years of advocacy and publication and persuasion within the scientific community by SENS supporters. To my eyes, the appearance of such things shows that SENS is winning the battle of ideas within the scientific community, and it is only a matter of time before it and similar repair-based efforts aimed at human rejuvenation dominate the field. Rightly so, too, and it can’t happen soon enough for my liking. SENS and SENS-like research is the only way we’re likely to see meaningful life extension technologies emerge before those of us in middle age now die, so the more of it taking place the better.

Aubrey de Grey, author of the original SENS proposals and now Chief Science Officer of the SENS Research Foundation that funds and guides rejuvenation research programs, is justifiably pleased by the existence of the Hallmarks of Aging. See this editorial in the latest Rejuvenation Research, for example:

A Divide-and-Conquer Assault on Aging: Mainstream at Last

Quote:

On June 6th, a review appeared concerning the state of aging research and the promising ways forward for the field. So far, so good. But this was not any old review. Here’s why: (a) it appeared in Cell, one of the most influential journals in biology; (b) it is huge by Cell’s standards – 24 pages, with well over 300 references; (c) all its five authors are exceptionally powerful opinion-formers – senior, hugely accomplished and respected scientists; (d) above all, it presents a dissection of aging into distinct (though inter-connected) processes and recommends a correspondingly multi-pronged (“divide and conquer”) approach to intervention.

It will not escape those familiar with SENS that this last feature is not precisely original, and it may arouse some consternation that no reference is made in the paper to that prior work. But do I care? Well, maybe a little – but really, hardly at all. SENS is not about me, nor even about SENS as currently formulated (though a depressing number of commentators in the field persist in presuming that it is). Rather, it is about challenging a profound, entrenched, and insidious dogma that has consumed biogerontology for the past 20 years, and which this new review finally – finally! – challenges (albeit somewhat diplomatically) with far more authority than I could ever muster.

Aging has been shown, over several decades, to consist of a multiplicity of loosely linked processes, implying that robust postponement of age-related ill-health requires a divide-and-conquer approach consisting of a panel of interventions. Because such an approach is really difficult to implement, gerontologists initially adopted a position of such extreme pessimism that all talk of intervention became unfashionable. The discovery of genetic and pharmacological ways to mimic [calorie restriction], after a brief period of confused disbelief, was so seductive as a way to raise the field’s profile that it was uncritically embraced as the fulcrum of translational gerontology for 20 years, but finally that particular emperor has been decisively shown to have no biomedically relevant clothes.

The publication of so authoritative a commentary adopting the “paleogerontological” position, that aging is indeed chaotic and complex and intervention will indeed require a panel of therapies, but now combined with evidence-based optimism as to the prospects for implementing such a panel, is a key step in the elevation of translational gerontology to a truly mature field.

In essence, as de Grey points out, work on aging has been following the wrong, slow, expensive, low-yield path for a couple of decades: the path of deciphering the mechanisms of calorie restriction and altering genes and metabolism to slightly slow down aging. This path cannot result in large gains in life expectancy and long-term health, and it cannot result in therapies that will greatly help people who are already old. What use is slowing down the accumulation of the damage of aging if you are already just a little more damage removed from death, and frail and suffering because of it, and the treatment will meaningfully alter none of that? If we want to add decades or more to our healthy life spans before we die, then rejuvenation and repair of damage are what is needed: ways to reverse frailty, remove suffering, and restore youthful function.

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries.  

This work is reproduced here in accord with a Creative Commons Attribution license.  It was originally published on FightAging.org.

Arguing by Induction for an Absence of Boredom in an Ageless, Greatly Extended Healthy Life – Article by Reason

Arguing by Induction for an Absence of Boredom in an Ageless, Greatly Extended Healthy Life – Article by Reason

The New Renaissance Hat
Reason
June 19, 2013
******************************
Originally published on the Fight Aging! website.
***

It is usually the case that the first knee-jerk reaction in opposition to increased human longevity is based on the mistaken belief that life-extension technologies would lead to people being ever more frail and decrepit for a very long time. This is far from the case, and it’s probably not even possible to cost-effectively engineer a society of long-lived frail people – even if that was the goal to hand. If you are frail and decrepit, then you have a high mortality rate due to the level of age-related cellular and molecular damage that is causing the failure and degeneration of your body and its organs. You won’t be around for long. No, the only way to engineer longer healthy life is to extend the period of youth and vitality, a time in which you have little age-related damage and your mortality rate is very low. Most present strategies are aimed to prolong that period of life, either by slowing the rate at which damage occurs (not so good) or finding ways to periodically repair the damage and thus rejuvenate the patient (much better).

Once people grasp that longevity science is the effort to make people younger for far longer, then the second knee-jerk objection arises. This is the belief that a very long-lived individual would become overwhelmed by boredom: they would run out of interest and novelty. This is by far the sillier objection, and there is absolutely no rational basis for it. Even a few moments of thought should convince you that there is far more to do and learn that you could achieve in a thousand life spans – and it’s a little early in the game to be objecting to enhanced longevity on the basis that you can’t think of what to do with life span number number 1001.

Considering boredom, futility, meaningless, and related matters, I noticed what appears to be an argument by induction in the article below. Mathematical induction is a tool used in formal proofs wherein if you can prove that something is generally true for n and n+1 (where n is a natural number), and then show that it is true for 1, then you can conclude it must be true for all natural numbers. If it is true for 1, then it must be true for 1+1 = 2, and true for 2+1 = 3, and so on.

Basics of an Induction Proof 

Life Extension Leads to Meaningless Days? NO! – by Extropia DaSilva

Person 1 lives a fulfilling and meaningful life for X number of years before that life is terminated by a sudden, massive heart attack. Now, imagine another person whom we shall label (not too creatively) ‘Person 2′. Person 2’s life follows the same general path as that of Person 1, with one exception: It is one day longer than Person 1’s was. Now ask yourself: Is there any reason to suppose that this day – let us assume it is a Tuesday – strikes Person 2 as being meaningless despite the fact that all Tuesdays (and, indeed, every other day in Person 2’s past) seemed worth living? Personally I cannot see any reason to suppose that this Tuesday should not be as worth living through as the previous day was. Person 2’s life was as meaningful as that of Person 1, and the extra day Person 2 lived to see did not negatively affect quality of life (it might have positively affected it, but that is another matter).

OK, so now imagine yet another person who goes by the label of… yes, you guessed it, Person 3. You can probably also guess that Person 3 lives one day longer than Person 2. Once again, I can think of no reason why, where we have two people who live meaningful lives but one lives one day longer, that extra day would not seem worth experiencing. Put another way: If possible, would Persons 2 and 1 rather not be dead on Wednesday (the last day for Person 3) when Monday and all preceding days were worth experiencing? So far as I can see, the answer to that question is, ‘yes’.

There seems to be no reason why this argument should not hold for any number of hypothetical people, each one of which lives one day longer than the last.

Unfortunately you can’t prove conjectures about aspects of human nature with induction (or not yet, at least). What you can do is use it, as above, to mount a more convincing argument. This one is somewhat akin to one of the standard lines in any debate between a person who is in favor of greatly extending healthy life versus someone who isn’t.

Advocate: So you are fine with aging and dying?

Deathist: Yes.

Advocate: So you are fine with dying right now, done and finished?

Deathist: Well, no.

Advocate: Why would you think any differently ten days, or a hundred days, or decades from now, if you still had your health and vigor?

Deathist: Um…

There seems to be a strange disconnect in many people’s minds, in which they are vigorously in favor of being alive right this instant or next week, but they nonetheless believe that their future self of years ahead will be of a different opinion and want to die. Now if you’re on the downhill slope of aging, in great pain, and your body is falling apart, desiring a stopping point is not unreasonable. (With the best of present options for those in that position being cryonics). But in a world of rejuvenation therapies, in which older life is just as healthy, low-risk, and full of possibility as younger life, what mysterious thing is going to make people want to die?

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries.  

This work is reproduced here in accord with a Creative Commons Attribution license.  It was originally published on FightAging.org.

Mitochondrially Targeted Antioxidant SS-31 Reverses Some Measures of Aging in Muscle – Article by Reason

Mitochondrially Targeted Antioxidant SS-31 Reverses Some Measures of Aging in Muscle – Article by Reason

The New Renaissance Hat
Reason
May 26, 2013
******************************

Originally published on the Fight Aging! website.

Antioxidants of the sort you can buy at the store and consume are pretty much useless: the evidence shows us that they do nothing for health, and may even work to block some beneficial mechanisms. Targeting antioxidant compounds to the mitochondria in our cells is a whole different story, however. Mitochondria are swarming bacteria-like entities that produce the chemical energy stores used to power cellular processes. This involves chemical reactions that necessarily generate reactive oxygen species (ROS) as a byproduct, and these tend to react with and damage protein machinery in the cell. The machinery that gets damaged the most is that inside the mitochondria, of course, right at ground zero for ROS production. There are some natural antioxidants present in mitochondria, but adding more appears to make a substantial difference to the proportion of ROS that are soaked up versus let loose to cause harm.

If mitochondria were only trivially relevant to health and longevity, this wouldn’t be a terribly interesting topic, and I wouldn’t be talking about it. The evidence strongly favors mitochondrial damage as an important contribution to degenerative aging, however. Most damage in cells is repaired pretty quickly, and mitochondria are regularly destroyed and replaced by a process of division – again, like bacteria. Some rare forms of mitochondrial damage persist, however, eluding quality-control mechanisms and spreading through the mitochondrial population in a cell. This causes cells to fall into a malfunctioning state in which they export massive quantities of ROS out into surrounding tissue and the body at large. As you age, ever more of your cells suffer this fate.

In recent years a number of research groups have been working on ways to deliver antioxidants to the mitochondria, some of which are more relevant to future therapies than others. For example gene therapies to boost levels of natural mitochondrial antioxidants like catalase are unlikely to arrive in the clinic any time soon, but they serve to demonstrate significance by extending healthy life in mice. A Russian research group has been working with plastinquinone compounds that can be ingested and then localize to the mitochondria, and have shown numerous benefits to result in animal studies of the SkQ series of drug candidates.

US-based researchers have been working on a different set of mitochondrially targeted antioxidant compounds, with a focus on burn treatment. However, they recently published a paper claiming reversal of some age-related changes in muscle tissue in mice using their drug candidate SS-31. Note that this is injected, unlike SkQ compounds:

Mitochondrial targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice

Quote:

Mitochondrial dysfunction plays a key pathogenic role in aging skeletal muscle resulting in significant healthcare costs in the developed world. However, there is no pharmacologic treatment to rapidly reverse mitochondrial deficits in the elderly. Here we demonstrate that a single treatment with the mitochondrial targeted peptide SS-31 restores in vivo mitochondrial energetics to young levels in aged mice after only one hour.

Young (5 month old) and old (27 month old) mice were injected intraperitoneally with either saline or 3 mg/kg of SS-31. Skeletal muscle mitochondrial energetics were measured in vivo one hour after injection using a unique combination of optical and 31 P magnetic resonance spectroscopy. Age-related declines in resting and maximal mitochondrial ATP production, coupling of oxidative phosphorylation (P/O), and cell energy state (PCr/ATP) were rapidly reversed after SS-31 treatment, while SS-31 had no observable effect on young muscle.

These effects of SS-31 on mitochondrial energetics in aged muscle were also associated with a more reduced glutathione redox status and lower mitochondrial [ROS] emission. Skeletal muscle of aged mice was more fatigue resistant in situ one hour after SS-31 treatment and eight days of SS-31 treatment led to increased whole animal endurance capacity. These data demonstrate that SS-31 represents a new strategy for reversing age-related deficits in skeletal muscle with potential for translation into human use.

So what is SS-31? If look at the publication history for these authors you’ll find a burn-treatment-focused open-access paper that goes into a little more detail and a 2008 review paper that covers the pharmacology of the SS compounds:

Quote:

The SS peptides, so called because they were designed by Hazel H. Sezto and Peter W. Schiler, are small cell-permeable peptides of less than ten amino acid residues that specifically target to inner mitochondrial membrane and possess mitoprotective properties. There have been a series of SS peptides synthesized and characterized, but for our study, we decided to use SS-31 peptide (H-D-Arg-Dimethyl Tyr-Lys-Phe-NH2) for its well-documented efficacy.

Studies with isolated mitochondrial preparations and cell cultures show that these SS peptides can scavenge ROS, reduce mitochondrial ROS production, and inhibit mitochondrial permeability transition. They are very potent in preventing apoptosis and necrosis induced by oxidative stress or inhibition of the mitochondrial electron transport chain. These peptides have demonstrated excellent efficacy in animal models of ischemia-reperfusion, neurodegeneration, and renal fibrosis, and they are remarkably free of toxicity.

Given the existence of a range of different types of mitochondrial antioxidant and research groups working on them, it seems that we should expect to see therapies emerge into the clinic over the next decade. As ever, the regulatory regime will ensure that they are only approved for use in treatment of specific named diseases and injuries such as burns, however. It’s still impossible to obtain approval for a therapy to treat aging in otherwise healthy individuals in the US, as the FDA doesn’t recognize degenerative aging as a disease. The greatest use of these compounds will therefore occur via medical tourism and in a growing black market for easily synthesized compounds of this sort.

In fact, any dedicated and sufficiently knowledgeable individual could already set up a home chemistry lab, download the relevant papers, and synthesize SkQ or SS compounds. That we don’t see this happening is, I think, more of a measure of the present immaturity of the global medical tourism market than anything else. It lacks an ecosystem of marketplaces and review organizations that would allow chemists to safely participate in and profit from regulatory arbitrage of the sort that is ubiquitous in recreational chemistry.

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries.  

This work is reproduced here in accord with a Creative Commons Attribution license.  It was originally published on FightAging.org.