Browsed by
Tag: alternative energy

Ideas for Technological Solutions to Destructive Climate Change – Article by G. Stolyarov II

Ideas for Technological Solutions to Destructive Climate Change – Article by G. Stolyarov II

G. Stolyarov II



Destructive climate change is no longer a hypothesis or mere possibility; rather, the empirical evidence for it has become apparent in the form of increasingly frequent extremes of temperature and natural disasters – particularly the ongoing global heat wave and major wildfires occurring in diverse parts of the world. In each individual incident, it is difficult to pinpoint “climate change” as a singular cause, but climate change can be said to exacerbate the frequency and severity of the catastrophes that arise. Residing in Northern Nevada for the past decade has provided me ample empirical evidence of the realities of deleterious climate change. Whereas there were no smoke inundations from California wildfires during the first four summers of my time in Northern Nevada, the next six consecutive summers (2013-2018) were all marked by widespread, persistent inflows of smoke from major wildfires hundreds of kilometers away, so as to render the air quality here unhealthy for long periods of time. From a purely probabilistic standpoint, the probability of this prolonged sequence of recent but consistently recurring smoke inundations would be minuscule in the absence of some significant climate change. Even in the presence of some continued debate over the nature and causes of climate change, the probabilities favor some action to mitigate the evident adverse effects and to rely on the best-available scientific understanding to do so, even with the allowance that the scientific understanding will evolve and hopefully become more refined over time – as good science does. Thus, it is most prudent to accept that there is deleterious climate change and that at least a significant contribution to it comes from emissions of certain gases, such as carbon dioxide and methane, into the atmosphere as a result of particular human activities, the foremost of which is the use of fossil fuels. This is not an indictment of human beings, nor even of fossil fuels per se, but rather an indication that the deleterious side effects of particular activities should be prevented or alleviated through further human activity and ingenuity.

Yet one of the major causes of historical reluctance among laypersons, especially in the United States, to accept the findings of the majority of climate scientists has been the misguided conflation by certain activists (almost always on the political Left) of the justifiable need to prevent or mitigate the effects of climate change with specific policy recommendations that are profoundly counterproductive to that purpose and would only increase the everyday suffering of ordinary people without genuinely alleviating deleterious climate change. The policy recommendations of this sort have historically fallen into two categories: (i) Neo-Malthusian, “back to nature” proposals to restrict the use of advanced technologies and return to more primitive modes of living; and (ii) elaborate economic manipulations, such as the creation of artificial markets in “carbon credits”, or the imposition of a carbon tax or a related form of “Pigovian tax” – ostensibly to associate the “negative externalities” of greenhouse-gas emissions with a tangible cost. The Neo-Malthusian “solutions” would, in part deliberately, cause extreme detriments to most people’s quality of life (for those who remain alive), while simultaneously resulting in the use of older, far more environmentally destructive techniques of energy generation, such as massive deforestation or the combustion of animal byproducts. The Neo-Pigovian economic manipulations ignore how human motives and incentives actually work and are far too indirect and contingent on a variety of assumptions that are virtually never likely to hold in practice. At the same time, the artificially complex structures that these economic manipulations inevitably create would pose obstructions to the direct deployment of more straightforward solutions by entangling such potential solutions in an inextricable web of compliance interdependencies.

The solutions to destructive climate change are ultimately technological and infrastructural.  No single device or tactic – and certainly no tax or prohibition – can comprehensively combat a problem of this magnitude and variety of impacts. However, a suite of technologically oriented approaches – pushing forward the deployment and quality of the arsenal of tools available to humankind – could indeed arrest and perhaps reverse the course of deleterious climate change by directly reducing the emissions of greenhouse gases and/or directly alleviating the consequences of increased climate variability.

Because both human circumstances and current as well as potential technologies are extremely diverse, no list of potential solutions to deleterious climate change can ever be exhaustive. Here I attempt the beginnings of such a list, but I invite others to contribute additional technologically oriented solutions as well. There are only two constraints on the kinds of solutions that can feasibly and ethically combat deleterious climate change – but those constraints are of immense importance:

Constraint 1. The solutions may not result in a net detriment to any individual human’s length or material quality of life.

Constraint 2. The solutions may not involve the prohibition of technologies or the restraint of further technological progress.

Constraint 1 implies that any solution to deleterious climate change will need to be a Pareto-efficient move, in that at least one person should benefit, while no person should suffer a detriment (or at least a detriment that has not been satisfactorily compensated for in that person’s judgment). Constraint 2 implies a techno-optimistic and technoprogressive perspective on combating deleterious climate change: we can do it without restrictions or prohibitions, but rather through innovations that will benefit all humans. Some technologies, particularly those associated with the extraction and use of fossil fuels, may gradually be consigned to obsolescence and irrelevance with this approach, but this will be due to their voluntary abandonment once superior, more advanced technological alternatives become widespread and economical to deploy. The more freedom to innovate and active acceleration of technological progress exist, the sooner that stage of fossil-fuel obsolescence could be reached. In the meantime, some damaging events are unfortunately unavoidable (as are many natural catastrophes more generally in our still insufficiently advanced era), but a variety of approaches can be deployed to at least prevent or reduce some damage that would otherwise arise.

If humanity solves the problems of deleterious climate change, it can only be with the mindset that solutions are indeed achievable, and they are achievable without compromising our progress or standards of living. We must be neither defeatists nor reactionaries, but rather should proactively accelerate the development of emerging technologies to meet this challenge by actualizing the tremendous creative potential our minds have to offer.

What follows is the initial list of potential solutions. Long may it grow.

Direct Technological Innovation

  • Continued development of economical solar and wind power that could compete with fossil fuels on the basis of cost alone.
  • Continued development of electric vehicles and increases in their range, as well as deployment of charging stations throughout all inhabited areas to enable recharging to become as easy as a refueling a gasoline-powered vehicle.
  • Development of in vitro (lab-grown) meat that is biologically identical to currently available meat but does not require actual animals to die. Eventually this could lead the commercial raising of cattle – which contribute significantly to methane emissions – to decline substantially.
  • Development of vertical farming to increase the amount of arable land indoors – rendering more food production largely unaffected by climate change.
  • Autonomous vehicles offered as services by transportation network companies – reducing the need for direct car ownership in urban areas.
  • Development and spread of pest-resistant, drought-resistant genetically modified crops that require less intensive cultivation techniques and less application of spray pesticides, and which can also flourish in less hospitable climates.
  • Construction of hyperloop transit networks among major cities, allowing rapid transit without the pollution generated by most automobile and air travel. Hyperloop networks would also allow for more rapid evacuation from a disaster area.
  • Construction of next-generation, meltdown-proof nuclear-power reactors, including those that utilize the thorium fuel cycle. It is already possible today for most of a country’s electricity to be provided through nuclear power, if only the fear of nuclear energy could be overcome. However, the best way to overcome the fear of nuclear energy is to deploy new technologies that eliminate the risk of meltdown. In addition to this, technologies should be developed to reprocess nuclear waste and to safely re-purpose dismantled nuclear weapons for civilian energy use.
  • Construction of smart infrastructure systems and devices that enable each building to use available energy with the maximum possible benefit and minimum possible waste, while also providing opportunities for the building to generate its own renewable energy whenever possible.
  • In the longer term, development of technologies to capture atmospheric carbon dioxide and export it via spaceships to the Moon and Mars, where it could be released as part of efforts to generate a greenhouse effect and begin terraforming these worlds.

Disaster Response

  • Fire cameras located at prominent vantage points in any area of high fire risk – perhaps linked to automatic alerts to nearby fire departments and sprinkler systems built into the landscape, which might be auto-activated if a sufficiently large fire is detected in the vicinity.
  • Major increases in recruitment of firefighters, with generous pay and strategic construction of outposts in wilderness areas. Broad, paved roads need to lead to the outposts, allowing for heavy equipment to reach the site of a wildfire easily.
  • Development of firefighting robots to accompany human firefighters. The robots would need to be constructed from fire-resistive materials and have means of transporting themselves over rugged terrain (e.g., tank treads).
  • Design and deployment of automated firefighting drones – large autonomous aircraft that could carry substantial amounts of water and/or fire-retardant sprays.

Disaster Prevention

  • Recruitment of large brush-clearing brigades to travel through heavily forested areas – particularly remote and seldom-accessed ones – and clear dead vegetation as well as other wildfire fuels. This work does not require significant training or expertise and so could offer an easy job opportunity for currently unemployed or underemployed individuals. In the event of shortages of human labor, brush-clearing robots could be designed and deployed. The robots could also have the built-in capability to reprocess dead vegetation into commercially usable goods – such as mulch or wood pellets. Think of encountering your friendly maintenance robot when hiking or running on a trail!
  • Proactive creation of fire breaks in wilderness areas – not “controlled burns” (which are, in practice, difficult to control) but rather controlled cuts of smaller, flammable brush to reduce the probability of fire spreading. Larger trees of historic significance should be spared, but with defensible space created around them.
  • Deployment of surveillance drones in forested areas, to detect behaviors such as vandalism or improper precautions around manmade fires – which are often the causes of large wildfires.
  • Construction of large levees throughout coastal regions – protecting lowland areas from flooding and achieving in the United States what has been achieved in the Netherlands over centuries on a smaller scale. Instead of building a wall at the land border, build many walls along the coasts!
  • Construction of vast desalination facilities along ocean coasts. These facilities would take in ocean water, thereby counteracting the effects of rising water levels, then purify the water and transmit it via a massive pipe network throughout the country, including to drought-prone regions. This would mitigating multiple problems, reducing the excess of water in the oceans while replenishing the deficit of water in inland areas.
  • Creation of countrywide irrigation and water-pipeline networks to spread available water and prevent drought wherever it might arise.

Economic Policies

  • Redesign of home insurance policies and disaster-mitigation/recovery grants to allow homeowners who lost their homes to natural disasters to rebuild in different, safer areas.
  • Development of workplace policies to encourage telecommuting and teleconferencing, including through immersive virtual-reality technologies that allow for plausible simulacra of in-person interaction. The majority of business interactions can be performed virtually, eliminating the need for much business-related commuting and travel.
  • Elimination of local and regional monopoly powers of utility companies in order to allow alternative-energy utilities, such as companies specializing in the installation of solar panels, to compete and offer their services to homeowners independently of traditional utilities.
  • Establishment of consumer agencies (public or private) that review products for durability and encourage the construction of devices that lack “planned obsolescence” but rather can be used for decades with largely similar effect.
  • Establishment of easily accessible community repair shops where old devices and household goods can be taken to be repaired or re-purposed instead of being discarded.
  • Abolition of inflexible zoning regulations and overly prescriptive building codes; replacement with a more flexible system that allows a wide variety of innovative construction techniques, including disaster-resistant and sustainable construction methods, tiny homes, homes created from re-purposed materials, and mixed-use residential/commercial developments (which also reduce the need for vehicular commuting).
  • Abolition of sales taxes on energy-efficient consumer goods.
  • Repeal or non-enactment of any mileage-based taxes for electric or hybrid vehicles, thereby resulting in such vehicles becoming incrementally less expensive to operate.
  • Lifting of all bans and restrictions on genetically modified plants and animals – which are a crucial component in adaptation to climate change and in reducing the carbon footprint of agricultural activities.

Harm Mitigation

  • Increases in planned urban vegetation through parks, rooftop gardens, trees planted alongside streets, pedestrian / bicyclist “greenways” lined with vegetation. The additional vegetation can absorb carbon dioxide, reducing the concentrations in the atmosphere.
  • Construction of additional pedestrian / bicyclist “greenways”, which could help reduce the need for vehicular commutes.
  • Construction of always-operational disaster shelters with abundant stockpiles of aid supplies, in order to prevent the delays in deployment of resources that occur during a disaster. When there is no disaster, the shelters could perform other valuable tasks that generally are not conducive to market solutions, such as litter cleanup in public spaces or even offering inexpensive meeting space to various individuals and organizations. (This could also contribute to the disaster shelters largely becoming self-funding in calm times.)
  • Provision of population-wide free courses on disaster preparation and mitigation. The courses could have significant online components as well as in-person components administered by first-aid and disaster-relief organizations.

This article is made available pursuant to the Creative Commons Attribution 4.0 International License, which requires that credit be given to the author, Gennady Stolyarov II (G. Stolyarov II). Learn more about Mr. Stolyarov here

Oil Prices Too Low? – Article by Randal O’Toole

Oil Prices Too Low? – Article by Randal O’Toole

The New Renaissance HatRandal O’Toole
******************************

Remember peak oil? Remember when oil prices were $140 a barrel and Goldman Sachs predicted they would soon reach $200? Now, the latest news is that oil prices have gone up all the way to $34 a barrel. Last fall, Goldman Sachs predicted prices would fall to $20 a barrel, which other analysts argued was “no better than its prior predictions,” but in fact they came a lot closer to that than to $200.

Low oil prices generate huge economic benefits. Low prices mean increased mobility, which means increased economic productivity. The end result, says Bank of America analyst Francisco Blanch, is “one of the largest transfers of wealth in human history” as $3 trillion remain in consumers’ pockets rather than going to the oil companies. I wouldn’t call this a “wealth transfer” so much as a reduction in income inequality, but either way, it is a good thing.

Naturally, some people hate the idea of increased mobility from lower fuel prices. “Cheap gas raises fears of urban sprawl,” warns NPR. Since “urban sprawl” is a made-up problem, I’d have to rewrite this as, “Cheap gas raises hopes of urban sprawl.” The only real “fear” is on the part of city officials who want everyone to pay taxes to them so they can build stadiums, light-rail lines, and other useless urban monuments.

A more cogent argument is made by UC Berkeley sustainability professor Maximilian Auffhammer, who argues that “gas is too cheap” because current prices fail to cover all of the external costs of driving. He cites what he calls a “classic paper” that calculates the external costs of driving to be $2.28 per gallon. If that were true, then one approach would be to tax gasoline $2.28 a gallon and use the revenues to pay those external costs.

The only problem is that most of the so-called external costs aren’t external at all but are paid by highway users. The largest share of calculated costs, estimated at $1.05 a gallon, is the cost of congestion. This is really a cost of bad planning, not gasoline. Either way, the cost is almost entirely paid by people in traffic consuming that gasoline.

The next largest cost, at 63 cents a gallon, is the cost of accidents. Again, this is partly a cost of bad planning: remember how fatality rates dropped nearly 20 percent between 2007 and 2009, largely due to the reduction in congestion caused by the recession? This decline could have taken place years before if cities had been serious about relieving congestion rather than ignoring it. In any case, most of the cost of accidents, like the other costs of congestion, are largely internalized by the auto drivers through insurance.

The next-largest cost, pegged at 42 cents per gallon, is “local pollution.” While that is truly an external cost, it is also rapidly declining as shown in figure 1 of the paper. According to EPA data, total vehicle emissions of most pollutants have declined by more than 50 percent since the numbers used in this 2006 report. Thus, the 42 cents per gallon is more like 20 cents per gallon and falling fast.

At 12 cents a gallon, the next-largest cost is “oil dependency,” which the paper defines as exposing “the economy to energy price volatility and price manipulation” that “may compromise national security and foreign policy interests.” That problem, which was questionable in the first place, seems to have gone away thanks to the resurgence of oil production within the United States, which has made other oil producers, such as Saudi Arabia, more dependent on us than we are on them.

Finally, at a mere 6 cents per gallon, is the cost of greenhouse gas emissions. If you believe this is a cost, it will decline when measured as a cost per mile as cars get more fuel efficient under the current CAFE standards. But it should remain fixed as a cost per gallon as burning a gallon of gasoline will always produce a fixed amount of greenhouse gases.

In short, rather than $2.38 per gallon, the external cost of driving is closer to around 26 cents per gallon. Twenty cents of this cost is steadily declining as cars get cleaner and all of it is declining when measured per mile as cars get more fuel-efficient.

It’s worth noting that, though we are seeing an increase in driving due to low fuel prices, the amount of driving we do isn’t all that sensitive to fuel prices. Real gasoline prices doubled between 2000 and 2009, yet per capita driving continued to grow until the recession began. Prices have fallen by 50 percent in the last six months or so, yet the 3 or 4 percent increase in driving may be as much due to increased employment as to more affordable fuel.

This means that, though there may be some externalities from driving, raising gas taxes and creating government slush funds with the revenues is not the best way of dealing with those externalities. I’d feel differently if I felt any assurance that government would use those revenues to actually fix the externalities, but that seems unlikely. I actually like the idea of tradable permits best, but short of that the current system of ever-tightening pollution controls seems to be working well at little cost to consumers and without threatening the economic benefits of increased mobility.

Randal O’Toole is a Cato Institute Senior Fellow working on urban growth, public land, and transportation issues. O’Toole’s research on national forest management, culminating in his 1988 book, Reforming the Forest Service, has had a major influence on Forest Service policy and on-the-ground management. His analysis of urban land-use and transportation issues, brought together in his 2001 book, The Vanishing Automobile and Other Urban Myths, has influenced decisions in cities across the country. In his book The Best-Laid Plans, O’Toole calls for repealing federal, state, and local planning laws and proposes reforms that can help solve social and environmental problems without heavy-handed government regulation. O’Toole’s latest book is American Nightmare: How Government Undermines The Dream of Homeownership. O’Toole is the author of numerous Cato papers. He has also written for Regulation magazine as well as op-eds and articles for numerous other national journals and newspapers. O’Toole travels extensively and has spoken about free-market environmental issues in dozens of cities. An Oregon native, O’Toole was educated in forestry at Oregon State University and in economics at the University of Oregon.