Browsed by
Tag: Alzheimer’s disease

What It Will Be Like to Be an 85-Year-Old in the 2070s – Article by Scott Emptage

What It Will Be Like to Be an 85-Year-Old in the 2070s – Article by Scott Emptage

Scott Emptage

I will be 85 sometime in the early 2070s. It seems like a mirage, an impossible thing, but the future eventually arrives regardless of whatever you or I might think about it. We all have a vision of what it is to be 85 today, informed by our interactions with elder family members, if nothing else. People at that age are greatly impacted by aging. They falter, their minds are often slowed. They are physically weak, in need of aid. Perhaps that is why we find it hard to put ourselves into that position; it isn’t a pleasant topic to think about. Four decades out into the future may as well be a science-fiction novel, a faraway land, a tale told to children, for all the influence it has on our present considerations. There is no weight to it.

When I am 85, there will have been next to no senescent cells in my body for going on thirty years. I bear only a small fraction of the inflammatory burden of older people of past generations. I paid for the products of companies descended from Oisin Biotechnologies and Unity Biotechnology, every few years wiping away the accumulation of senescent cells, each new approach more effective than the last. Eventually, I took one of the permanent gene therapy options, made possible by biochemical discrimination between short-term beneficial senescence and long-term harmful senescence, and then there was little need for ongoing treatments. Artificial DNA machinery floats in every cell, a backup for the normal mechanisms of apoptosis, triggered by lingering senescence.

When I am 85, the senolytic DNA machinery will be far from the only addition to my cells. I underwent a half dozen gene therapies over the years. I picked the most useful of the many more that were available, starting once the price fell into the affordable-but-painful range, after the initial frenzy of high-cost treatments subsided into business as usual. My cholesterol transport system is enhanced to attack atherosclerotic lesions, my muscle maintenance and neurogenesis operate at levels far above what was once a normal range for my age, and my mitochondria are both enhanced in operation and well-protected against damage by additional copies of mitochondrial genes backed up elsewhere in the cell. Some of these additions were rendered moot by later advances in medicine, but they get the job done.

When I am 85, my thymus will be as active as that of a 10-year-old child. Gene and cell therapies were applied over the past few decades, and as a result my immune system is well-gardened, in good shape. A combination of replacement hematopoietic stem cells, applied once a decade, the enhanced thymus, and periodic targeted destruction of problem immune cells keeps at bay most of the age-related decline in immune function, most of the growth in inflammation. The downside is that age-related autoimmunity has now become a whole lot more complex when it does occur, but even that can be dealt with by destroying and recreating the immune system. By the 2030s this was a day-long procedure with little accompanying risk, and the price fell thereafter.

When I am 85, atherosclerosis will be curable, preventable, and reversible, and that will have been the case for a few decades. There are five or six different viable approaches in the marketplace, all of which basically work. I used several of their predecessors back in the day, as well. Most people in the wealthier parts of the world have arteries nearly free from the buildup of fat and calcification. Cardiovascular disease with age now has a very different character, focused more failure of tissue maintenance and muscle strength and the remaining small portions of hypertension that are still problematic for some individuals. But that too can be effectively postponed through a variety of regenerative therapies.

When I am 85, there will be an insignificant level of cross-linking in most of my tissues, as was the case since my early 60s. My skin has the old-young look of someone who went a fair way down the path before being rescued. Not that I care much about that – I’m much more interested in the state of my blood vessels, the degree to which they are stiff and dysfunctional. That is why removal of cross-links is valuable. That is the reason to keep on taking the yearly treatments of cross-link breakers, or undergo one of the permanent gene therapies to have your cells produce protective enzymes as needed.

When I am 85, I will have a three-decade patchwork history of treatments to partially clear this form of amyloid or that component of lipofuscin. I will not suffer Alzheimer’s disease. I will not suffer any of the common forms of amyloidosis. They are controlled. There is such a breadth of molecular waste, however: while the important ones are addressed, plenty more remain. This is one of the continuing serious impacts to the health of older individuals, and a highly active area of research and development.

When I am 85, I will be the experienced veteran of several potentially serious incidences of cancer, all of which were identified early and eradicated by a targeted therapy that produced minimal side-effects. The therapies evolve rapidly over the years: a bewildering range of hyper-efficient immunotherapies, as well as treatments that sabotage telomere lengthening or other commonalities shared by all cancer cells. They were outpatient procedures, simple and quick, with a few follow-up visits, so routine that they obscured the point that I would be dead several times over without them. The individual rejuvenation technologies I availed myself of over the years were narrowly focused, not perfect, and not available as early as I would have liked. Cancer is an inevitable side-effect of decades of a mix of greater tissue maintenance and unrepaired damage.

Do we know today what the state of health of a well-kept 85-year-old will be in the 2050s? No. It is next to impossible to say how the differences noted above will perform in the real world. They are all on the near horizon, however. The major causes of age-related death today will be largely controlled and cured in the 2050s, at least for those in wealthier regions. If you are in your 40s today, and fortunate enough to live in one of those wealthier region, then it is a given that you will not die from Alzheimer’s disease. You will not suffer from other common age-related amyloidosis conditions. Atherosclerosis will be reliably controlled before it might kill you. Inflammatory conditions of aging will be a shadow of what they once were, because of senolytic therapies presently under development. Your immune system will be restored and bolstered. The stem cells in at least your bone marrow and muscles will be periodically augmented. The cross-links that cause stiffening of tissues will be removed. Scores of other issues in aging process, both large and small, will have useful solutions available in the broader medical marketplace. We will all live longer and in better health as a result, but no-one will be able to say for just how long until this all is tried.

Scott Emptage is an anti-aging activist in the United Kingdom. 

BioViva Treats First Patient with Gene Therapy to Reverse Aging – Press Release by Elizabeth Parrish

BioViva Treats First Patient with Gene Therapy to Reverse Aging – Press Release by Elizabeth Parrish

The New Renaissance HatElizabeth Parrish
October 3, 2015

BioViva USA, Inc. has become the first company to treat a person with gene therapy to reverse biological aging, using a combination of two therapies developed and applied outside the United States of America. Testing and research on these therapies is continuing in BioViva’s affiliated labs worldwide.

BioViva CEO Elizabeth Parrish announced that the subject is doing well and has resumed regular activities. Preliminary results will be evaluated at 5 and 8 months with full outcome expected at 12 months. The patient will then be monitored every year for 8 years.

Gene therapy allows doctors to treat disease at the cellular level by inserting a gene into a patient’s cells instead of using the regular modalities of oral drugs or surgery. BioViva is testing several approaches to age reversal, including using gene therapy to introduce genes into the body.

Although not generally considered a disease, cellular aging is the leading cause of death in the developed world. Side effects like muscle wasting (sarcopenia), grey hair and memory loss are the well-known hallmarks.

And the aging cell is also responsible for the diseases of aging, including Alzheimer’s disease, heart disease and cancer. BioViva is leading the charge to treat the aging cell and reverse aging. “The aging cell is a key factor that has been overlooked for too long. Companies have put millions of dollars into treating the diseases of aging, such as dementia, frailty, kidney failure and Parkinson’s disease, and we still do not have a cure,” says Parrish.

Until now, no company had tried multiple gene therapies in one person. When asked why BioViva has done so, Parrish says, “Aging involves multiple pathways. We wanted to target more than one for a better outcome.”

Elizabeth Parrish

Elizabeth Parrish, CEO of BioViva, is a humanitarian, entrepreneur, and innovator, and is a leading voice for genetic cures. As a strong proponent of progress and education for the advancement of regenerative medicine modalities, she serves as a motivational speaker to the public at large for the life sciences. She is actively involved in international educational media outreach and sits on the board of the International Longevity Alliance (ILA). She is an affiliated member of the Complex Biological Systems Alliance (CBSA), which is a unique platform for Mensa-based, highly gifted persons who advance scientific discourse and discovery.

The mission of the CBSA is to further scientific understanding of biological complexity and the nature and origins of human disease. Elizabeth is the founder of BioTrove Investments LLC and the BioTrove Podcasts, which is committed to offering a meaningful way for people to learn about and fund research in regenerative medicine.  She is also the Secretary of The American Longevity Alliance (ALA), a 501(c)(3) nonprofit trade association that brings together individuals, companies, and organizations who work in advancing the emerging field of cellular and regenerative medicine.

Editor’s Note: Elizabeth Parrish also made the announcement of this promising human trial at the October 1, 2015, Movement for Indefinite Life Extension (MILE) panel discussion “How Can Life Extension Become as Popular as the War on Cancer?” Watch the discussion here.

~ Gennady Stolyarov II, Editor-in-Chief, The Rational Argumentator, October 3, 2015

Announcements and October-November 2012 Update to Resources on Indefinite Life Extension

Announcements and October-November 2012 Update to Resources on Indefinite Life Extension

I expect be unavailable to publish The Rational Argumentator until circa November 22, 2012 – but, in the meantime, various new offerings have been posted for my readers.

In addition, I have recently been impressed by the significant contributions my computer has made to the World Community Grid Help Conquer Cancer distributed computing project. (You can see a presentation by one of the project’s lead scientists, Dr. Igor Jurisica, here.) About a month ago, the Help Conquer Cancer project was enhanced to allow computers’ Graphics Processing Units (GPUs) to assist in the analysis of millions of experiments. My own recently enhanced computer has been participating heavily, which caused my worldwide ranking on World Community Grid to rise within a month from about 60,000th place to 26,744th place (updated every half-day) in terms of credits and 15,795th place in terms of results returned. In addition, for the totality of BOINC distributed computing projects, I have risen to the 98.2932nd percentile and a world rank of 42,446 in terms of total credits and the 99.5634th percentile and a world rank of 10,878 in terms of recent average credit. In the United States, I am ranked at 11,802nd place in terms of total BOINC credit earned.

I expect that my computer will continue to run at full capacity during the upcoming weeks, and indefinitely into the foreseeable future.

For your contemplation and enjoyment, I offer here the list of diverse and fascinating articles and videos that have been included in the Resources on Indefinite Life Extension (RILE) page in October and early November of this year.


– “Nanoparticles Against Aging” – Science Daily and Asociación RUVID – October 3, 2012

– “Nanoparticles can deliver antiaging therapies” – Brian Wang – The Next Big Future – October 4, 2012

– “A Speculative Order of Arrival for Important Rejuvenation Therapies” – Reason – Fight Aging! – October 4, 2012

– “Therapy will use stem cells to heal heart” – Pauline Tam – October 4, 2012

– “Aubrey de Grey on Longevity Science” – Reason – Fight Aging! – October 5, 2012

– “Predicted sequence of Antiaging rejuvenation” – Brian Wang – The Next Big Future – October 5, 2012

– “Researchers use magnets to cause programmed cancer cell deaths” – Bob Yirka – October 8, 2012 

– “Lilly Alzheimer’s Drug Slows Mental Decline, Study Finds” – Shannon Pettypiece – October 8, 2012

– “Vitamin Variants Could Combat Cancer as Scientists Unravel B12 Secrets” – ScienceDaily and University of Kent – October 8, 2012

– “Human Immortality: Singularity Summit Looks Forward to the Day That Humans Can Live Forever” – Hamdan Azhar – Policymic – October 2012

– “Drug From Chinese ‘Thunder God Vine’ Slays Tumors in Mice” – Drew Armstrong – Bloomberg – October 17, 2012

– “82 Years of Technology Advances; but best yet to come” – Dick Pelletier – – October 25, 2012

– “New you by 2022: biotech enhancements will help you ‘grow young’” – Dick Pelletier – Positive Futurist – October 2012

– “Flu Vaccination May Increase Longevity” – Lyle J. Dennis, M.D. – Extreme Longevity – October 29, 2012

– “Dead as a Doornail?” – Peter Rothman – h+ Magazine – November 1, 2012

– “An Outcast Among Peers Gains Traction on Alzheimer’s Cure” – Jeanne Whalen – Wall Street Journal – November 9, 2012



Anthony Atala
Anthony Atala at TEDMED 2009
January 21, 2010

Ray Kurzweil

From Eliza Watson to Passing the Turing Test – Singularity Summit 2011

October 25, 2011

Nikola Danaylov

Ray Kurzweil on Singularity 1 on 1: Be Who You Would Like to Be – October 13, 2012

A Speculative Order of Arrival for Important Rejuvenation Therapies – Article by Reason

A Speculative Order of Arrival for Important Rejuvenation Therapies – Article by Reason

The New Renaissance Hat
October 6, 2012

A toolkit for producing true rejuvenation in humans will require a range of different therapies, each of which can repair or reverse one of the varied root causes of degenerative aging. Research is underway for all of these classes of therapy, but very slowly and with very little funding in some cases. The funding situation spans the gamut from that of the stem cell research community, where researchers are afloat in money and interest, to the search for ways to break down advanced glycation endproducts (AGEs), which is a funding desert by comparison, little known or appreciated outside the small scientific community that works in that field.

While bearing in mind that progress in projects with little funding is unpredictable in comparison to that of well-funded projects, I think that we can still take a stab at a likely order of arrival for various important therapies needed to reverse aging. Thus an incomplete list follows, running from the earliest to the latest arrival, with the caveat that it is based on the present funding and publicity situation. If any one of the weakly funded and unappreciated lines of research suddenly became popular and awash with resources, it would probably move up in the ordering:

1) Destruction of Senescent Cells

Destroying specific cells without harming surrounding cells is a well-funded line of research thanks to the cancer community, and the technology platforms under development can be adapted to target any type of cell once it is understood how to target its distinctive features.

The research community has already demonstrated benefits from senescent cell destruction, and there are research groups working on this problem from a number of angles. A method of targeting senescent cells for destruction was recently published, and we can expect to see more diverse attempts at this in the next few years. As soon as one of these can be shown to produce benefits in mice that are similar to the early demonstrations, then senescent cell clearance becomes a going concern: something to be lifted from the deadlocked US regulatory process and hopefully developed quickly into a therapy in Asia, accessed via medical tourism.

2) Selective Pruning and Support of the Immune System

One of the reasons for immune system decline is crowding out of useful immune cells by memory immune cells that serve little useful purpose. Here, targeted cell destruction can also produce benefits, and early technology demonstrations support this view. Again, the vital component is the array of mechanisms needed to target the various forms of immune cell that must be pruned. I expect the same rising tide of technology and knowledge that enables senescent cell targeting will lead to the arrival of immune cell targeting on much the same schedule.

Culling the immune system will likely have to be supported with some form of repopulation of cells. It is already possible to repopulate a patient’s immune system with immune cells cultivated from their own tissues, as demonstrated by the limited number of full immune system reboots carried out to cure autoimmune disorders. Alternatives to this process include some form of tissue engineering to recreate the dynamic, youthful thymus as a source of immune cells – or more adventurous processes such as cultivating thymic cells in a patient’s lymph nodes.

3) Mitochondrial Repair

Our mitochondria sabotage us. There’s a flaw in their structure and operation that causes a small but steadily increasing fraction of our cells to descend into a malfunctioning state that is destructive to bodily tissues and systems.

There are any number of proposed methods for dealing with this component of the aging process – either repairing or making it irrelevant – and a couple are in that precarious state of being just a little more solidity and work away from the point at which they could begin clinical development. The diversity of potential approaches in increasing too. Practical methods are now showing up for ways to put new mitochondria into cells, or target arbitrary therapies to the interior or mitochondria. It all looks very promising.

Further, the study of mitochondria is very broad and energetic, and has a strong presence in many areas of medicine and life science research. While few groups in the field are currently engaged in work on mitochondrial repair, there is an enormous reservoir of potential funding and workers awaiting any method of repair shown to produce solid results.

4) Reversing Stem Cell Aging

The stem cell research field is on a collision course with the issue of stem cell aging. Most of the medical conditions that are best suited to regenerative medicine, tissue engineering, and similar cell based therapies are age-related, and thus most of the patients are old. In order for therapies to work well, there must be ways to work around the issues caused by the aged biochemistry of the patient. To achieve this end, the research community will essentially have to enumerate the mechanisms by which stem cell populations decline and fail with age, and then reverse their effects.

Where stem cells themselves are damaged by age, stem cell populations will have to be replaced. This is already possible for many different types of stem cell, but there are potentially hundreds of different types of adult stem cell – and it is too much to expect for the processes and biochemistry to be very similar in all cases. A great deal of work will remain to be accomplished here even after the first triumphs involving hearts, livers, and kidneys.

Much of the problem, however, is not the stem cells but rather the environment they operate within. This is the bigger challenge: picking out all the threads of signalling, epigenetic change, and cause and effect that leads to quieted and diminished stem cell populations – and the resulting frailty as tissues are increasingly poorly supported. This is a fair sized task, and little more than inroads have been made to date – a few demonstrations in which one stem cell type has been coerced into acting with youthful vigor, and a range of research on possible processes and mechanisms to explain how an aging metabolism causes stem cells to slow down and stop their work.

The stem cell research community is, however, one of the largest in the world, and very well funded. This is a problem that they have to solve on the way to their declared goals. What I would expect to see here is for a range of intermediary stopgap solutions to emerge in the laboratory and early trials over the next decade. These will be limited ways to invigorate a few aged stem cell populations, intended to be used to boost the effectiveness of stem cell therapies for diseases of aging.

Any more complete or comprehensive solution for stem cell aging seems like a longer-term prospect, given that it involves many different stem cell populations with very different characteristics.

5) Clearing Advanced Glycation Endproducts (AGEs)

AGEs cause inflammation and other sorts of mischief through their presence, and this builds up with age. Unfortunately, research on breaking down AGEs to remove their contribution to degenerative aging has been a very thin thread indeed over the past few decades: next to no-one works on it, despite its importance, and very little funding is devoted to this research.

Now on the one hand it seems to be the case that one particular type of AGE – glucosepane – makes up 90% or more the AGEs in human tissues. On the other hand, efforts to find a safe way to break it down haven’t made any progress in the past decade, though a new initiative was launched comparatively recently. This is an excellent example of how minimally funded research can be frustrating: a field can hover just that one, single advance away from largely solving a major problem for years on end. All it takes is the one breakthrough, but the chances of that occurring depend heavily on the resources put into the problem: how many parallel lines of investigation can be followed, how many researchers are working away at it.

This is an excellent candidate for a line of research that could move upward in the order of arrival if either a large source of funding emerged or a plausible compound was demonstrated to safely and aggressively break down glucospane in cell cultures. There is far less work to be done here than to reverse stem cell aging, for example.

6) Clearing Aggregates and Lysomal Garbage

All sorts of aggregates build up within and around cells as a result of normal metabolic processes, causing harm as they grow, and the sheer variety of these waste byproducts is the real challenge. They range from the amyloid that features prominently in Alzheimer’s disease through to the many constituents of lipofuscin that clog up lysosomes and degrade cellular housekeeping processes. At this point in the advance of biotechnology it remains the case that dealing with each of the many forms of harmful aggregate must be its own project, and so there is a great deal of work involved in moving from where we stand today to a situation in which even a majority of the aggregates that build up with age can be removed.

The most promising lines of research to remove aggregates are immunotherapy, in which the immune system is trained or given the tools to to consume and destroy a particular aggregate, and medical bioremediation, which is the search for bacterial enzymes that can be repurposed as drugs to break down aggregates within cells. Immunotherapy to attack amyloid as a treatment for Alzheimer’s is a going concern, for example. Biomedical remediation is a younger and far less funded endeavor, however.

My expectation here is that some viable therapies for some forms of unwanted and harmful metabolic byproducts will emerge in the laboratory over the next decade, but that will prove to be just the start on a long road indeed. From here it’s hard for me to guess at where the 80/20 point might be in clearing aggregates: successfully clearing the five most common different compounds? Or the ten most common? Or twenty? Lipofuscin alone has dozens of different constituent chemicals and proteins, never mind the various other forms of aggregate involved in specific diseases such as Alzheimer’s.

But work is work: it can be surmounted. Pertinently, and again, the dominant issue in timing here is the lack of funding and support for biomedical remediation and similar approaches to clearing aggregates.

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries.  

This work is reproduced here in accord with a Creative Commons Attribution license.  It was originally published on