Browsed by
Tag: aging

D.N.A. Congress Announcement by the Institute of Exponential Sciences

D.N.A. Congress Announcement by the Institute of Exponential Sciences

The New Renaissance HatInstitute of Exponential Sciences
******************************
 

Editor’s Note: The forthcoming D.N.A. Congress in Utrecht, The Netherlands, hosted by the Institute of Exponential Sciences, devoted to discussions of gene therapies, receives the strong endorsement of both The Rational Argumentator and the Nevada Transhumanist Party. The D.N.A. Congress offers a promising venue to discuss the potential for gene therapies to cure diseases, lengthen lifespans, and improve quality of life for millions of people in the coming years and decades.

~ Gennady Stolyarov II, Editor-in-Chief, The Rational Argumentator, June 5, 2016

D.N.A CONGRESS PRESS RELEASE:

The Institute of Exponential Sciences (IES) has a large announcement to make. We are organising D.N.A – The largest European congress on human gene therapies, featuring speakers such as Aubrey de Grey, Liz Parrish, Oliver Medvedik and others.

Our event has been endorsed by LEAF, Heales VZW, BioViva, SENS Research Foundation, Singularity Network, People Unlimited, The Rational Argumentator, and many others. The event will be covered by national media and will be broadcasted online.

To make this vision a reality, we need your support. Share this message and donate today. Thank you!

IES needs your support to help make this vision a reality. Click here to donate to our crowdfunding campaign.

D.N.A – Designing New Advances: The second large Institute of Exponential Sciences event is coming to Utrecht

 

DNADemian Zivkovic

Utrecht – After a successful event last year in May, the grand congress is ready for a second edition. With a new name, we hope to make exponential sciences more approachable to the general public and bring people in the field closer together. The Institute of Exponential Sciences congress 2016 will be held at RASA podium on the 9th of July. The main theme of the event is gene therapies and cutting-edge applications of such therapies, such as health extension and interventions against human aging. To guarantee a great event, we have invited some of the biggest names in the field. Our guest speakers will be as follows:

Opening the event will be Oliver Medvedik, Ph.D, director of scientific programs at Genspace. Dr. Medvedik has earned his Ph.D at Harvard Medical school in the biomedical and biological sciences program. Since graduating from Harvard, he has worked as a biotechnology consultant, taught molecular biology to numerous undergraduates at Harvard, and mentored two of Harvard’s teams for the international genetically engineered machines competition (IGEM) held annually at M.I.T.

Our second speaker is Aubrey David Nicholas Jasper de Grey, Ph.D, an English author, Chief Science Officer of the SENS Research Foundation, and editor-in-chief of the academic journal Rejuvenation Research. Aubrey de Grey is well known for his focus on regenerative medicine and views on human aging. He will take the stage talking about the applications of current and upcoming technologies and studies which hold the potential to greatly extend our healthy lifespan.

Our third speaker is Tatjana Kochetkova, Ph.D, who is a fellow of the Institute of Exponential Sciences and a bioethicist. Dr. Kochetkova will follow up discussing the ethical and philosophical side of the technology and will address questions of what exponential technologies in biotech mean for society.

Our fourth speaker is Elizabeth Parrish, a fellow of the Institute of Exponential Sciences and the Founder and CEO of BioViva Sciences Inc, a Delaware corporation based in Seattle, WA, with labs and participating clinics in South/Central America where the majority of practical work is carried out. BioViva has been noted for being the first corporation in the world to treat a patient with gene therapy to reverse aging. The woman who wants to genetically engineer you will cover the basics of BioViva’s approach and vision for the the future, as well as the potential that gene therapies hold for radically improving our health and lives in the future.

Our fifth speaker will be Keith Comito, who is the founder and president of the Life Extension Advocacy Foundation (LEAF), a 501(c)(3) non-profit organization and a partner of the Institute of Exponential Sciences. Through LEAF, he operates the crowdfunding platform Lifespan.io, which supports biomedical research aimed at extending healthy human lifespan. He also serves as policy coordinator for the Global Healthspan Policy Institute, which facilitates relationships between researchers and government to advance initiatives in support of healthy life extension.

About Institute of Exponential Sciences

The Institute of Exponential Sciences is an international innovation-oriented think tank, outreach organisation, and networking platform based in the Netherlands, in the city of Utrecht. Its main activities include organising lectures and conferences, providing quality consultancy on innovation and exponential technologies, and collaborating with student organisations and universities in educating the public on the importance of exponential technologies.

It was founded by members of its predecessor, the Arma’thwynn society, which was a student group of like-minded young academics in the Netherlands. After organising events and attracting a very diverse and professional team of entrepreneurs, academics, and journalists, the society decided to move past student politics and make the move towards professionalism.

The Institute of Exponential Sciences is the result of that decision. After organising successful events (the largest of which was their symposium in April, 2015), the Institute of Exponential Sciences formalised its mission and reached out towards a process of international collaboration with other entities which share a techno-positive vision. The institute strives towards excellence in providing the best information and resources related to the issues relevant in the rapidly advancing technological society we live in.

The IES approach is focused on providing interdisciplinary education in the fields of exponential technologies such as artificial intelligence, bio-informatics, gene therapies, 3D-printing, augmented reality, and neural interfacing. We also provide a networking platform which allows entrepreneurs, scientists, journalists, and students to get in touch with others with similar ideas so that they may create the technologies of tomorrow. The IES strives not only to improve the speed of development of these technologies, but also to show the public the amazing possibilities technology provides for society.

IES and the IES logo are either registered trademarks or trademarks of IES Foundation in the Netherlands and/or other countries. All other products and/or services referenced are trademarks of their respective entities.

A Most Interesting Data Set Covering the Longevity of Polish Elite Athletes Across Much of the 20th Century – Article by Reason

A Most Interesting Data Set Covering the Longevity of Polish Elite Athletes Across Much of the 20th Century – Article by Reason

The New Renaissance HatReason
******************************

Today I noticed an open access paper in which the authors examine mortality data for Polish Olympic athletes over the past 90 years or so, and compare it with established historical data for the general population. This blends two topics that are occasionally covered here at Fight Aging!: firstly, the growth in human life expectancy in recent history and its causes, and secondly the topic of how regular exercise and life expectancy interact. It is the present consensus that elite athletes, those at the top of their profession, live longer than the rest of us, but it remains open to debate as to whether this is because more exercise is better, or because very robust people who would have lived longer anyway are more likely to enter the world of professional athletics. Researchers want to map the dose-response curve for exercise, in other words. Even though there is very good, very solid evidence for the benefits of regular moderate exercise versus being sedentary, going beyond that to a more nuanced view of what more or less exercise does for health is a challenging goal given the starting point of statistical snapshots of data from various study populations.

Studying the history of life expectancy isn’t much easier, though there the challenges tend to revolve around the ever-decreasing quality of data as you look further back in time. The 20th century marked transitions from hopeful aspiration to solid accomplishment in all fields of medicine, too many profound advances in the capabilities of medical science and practice to list here. As the decades passed, this important progress focused ever more on treatments for age-related conditions. An individual born in the US in 1900 suffered through the end of the era of poor control of infectious disease, prior to modern antibiotics and antiviral drugs, and likely benefited little from later progress towards better control of heart disease and other common age-related diseases. An individual born in the US in 1950, on the other hand, enjoyed a youth with comparatively little fear of disease, and is probably still alive today, with access to far more capable therapies than existed even a couple of decades ago.

Given all of this, one of the interesting things to note in the analysis of the Polish data is that the elite athletes born in the early 20th century appear to have a lower rate of aging than the general population, as determined by a slower rise in mortality over time, but that this difference between athletes and the average individual is greatly diminished for people born in the latter half of the 20th century. This suggests, roughly, that advances in medicine from 1900 to 1950 had a leveling effect, bringing up the average, preventing early deaths, but doing little to address age-related disease. That said, there is a large variation in results across the range of similar studies, both those that look at the history of longevity, and those that look at populations of athletes at a given time. It is wise to consider epidemiological studies in groups rather than one by one, and look for common themes. Still, this one is a fascinating data set for the way in which it combines historical trends and exercise in the study of aging.

Examining mortality risk and rate of ageing among Polish Olympic athletes: a survival follow-up from 1924 to 2012 – by Yuhui Lin, Antoni Gajewski, and Anna Poznańska

Quote:

A sedentary lifestyle is associated with the onset of chronic diseases including ischaemic heart disease, type-II diabetes and neurodegenerative diseases. Frequent exercise is perceived as a major behavioural determinant for improved life expectancy and a slower rate of ageing. There is little doubt that frequent exercise is beneficial for individuals’ well-being, and an active lifestyle reduces the risk for chronic diseases. However, it is still uncertain whether the rate of ageing decelerates in response to frequent and intense physical exercise. Our attempt is the first empirical study to show the application of a parametric frailty survival model to gain insights into the rate of ageing and mortality risk for Olympic athletes.

Our participants for this parametric frailty survival analysis were Polish athletes who had participated in the Olympic Games from 1924 to 2010. We assumed that these athletes were elite in their preferred sports expertise, and that they were engaged in frequent, if not intense, physical exercise. The earliest recorded year of birth was 1875, and the latest was in 1982; total N=2305; male=1828, female=477. For reliable estimates, mortality improvements by calendar events and birth cohort had to be taken into consideration to account for the advancements made in medicine and technology. After the consideration of mortality improvements and the statistical power for parametric survival analysis, we restricted our analysis to male athletes born from 1890 to 1959 (M=1273). For reliable estimates, we preassigned recruited athletes into two categorical cohorts: 1890-1919 (Cohort I); 1920-1959 (Cohort II).

Our findings suggest that Polish elite athletes in Cohort I born from 1890-1919 experienced a slower rate of ageing, and had a lower risk for mortality and a longer life-expectancy than the general population from the same birth cohort. It is very unlikely that these survival benefits were gained within a short observational time. Therefore, we argue that participation in frequent sports from young adulthood reduces mortality risk, increases life-expectancy and slows the rate of ageing. The age-specific mortality trajectories of Cohort I elite athletes also suggest frequent exercise can decelerate the rate of ageing by 1% with an achievement of threefold risk reduction in mortality. In comparison with those of the general population, the differences in energy expenditure, behavioural habits, body mass and sports expertise were likely to be the contributing factors to the higher variance in lifespan among elite athletes.

In Cohort II, the estimated rate of ageing is highly similar between elite athletes and the general population, which contradicts our estimates for Cohort I. This may be attributed to mortality improvements from year 1920 onwards in Poland. These mortality improvements have changed individuals’ susceptibilities for different causes of death, which has resulted in an increased variation in lifespan both in the general population and for elite athletes. Interestingly, the comparison of the rate of ageing of elite athletes in Cohort I and II shows a similar rate of ageing. Among the elite athletes, the estimates suggest that Cohort II individuals benefited from a 50% mortality risk reduction as compared with individuals born in Cohort I. The estimated overall mortality risk of the Polish general population is 29% lower in Cohort II than in I.

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries.
This work is reproduced here in accord with a Creative Commons Attribution license. It was originally published on FightAging.org.
The Two Faces of Aging: Cancer and Cellular Senescence – Article by Adam Alonzi

The Two Faces of Aging: Cancer and Cellular Senescence – Article by Adam Alonzi

The New Renaissance Hat
Adam Alonzi
******************************

This article is republished with the author’s permission. It was originally posted on Radical Science News.

hELA-400x300Multiphoton fluorescence image of HeLa cells.

Aging, inflammation, cancer, and cellular senescence are all intimately interconnected. Deciphering the nature of each thread is a tremendous task, but must be done if preventative and geriatric medicine ever hope to advance. A one-dimensional analysis simply will not suffice. Without a strong understanding of the genetic, epigenetic, intercellular, and intracellular factors at work, only an incomplete picture can be formed. However, even with an incomplete picture, useful therapeutics can be and are being developed. One face is cancer, in reality a number of diseases characterized by uncontrolled cell division. The other is degradation, which causes a slue of degenerative disorders stemming from deterioration in regenerative capacity.

Now there is a new focus on making geroprotectors, which are a diverse and growing family of compounds that assist in preventing and reversing the unwanted side effects of aging. Senolytics, a subset of this broad group, accomplish this feat by encouraging the removal of decrepit cells. A few examples include dasatinib, quercetin, and ABT263. Although more research must be done, there are a precious handful of studies accessible to anyone with the inclination to scroll to the works cited section of this article. Those within the life-extension community and a few enlightened souls outside of it already know this, but it bears repeating: in the developed world all major diseases are the direct result of the aging process. Accepting this rather simple premise, and you really ought to, should stoke your enthusiasm for the first generation of anti-aging elixirs and treatments. Before diving into the details of these promising new pharmaceuticals, nanotechnology, and gene therapies we must ask what is cellular senescence? What causes it? What purpose does it serve?

Depending on the context in which it is operating, a single gene can have positive or negative effects on an organism’s phenotype. Often the gene is exerting both desirable and undesirable influences at the same time. This is called antagonistic pleiotropy. For example, high levels of testosterone can confer several reproductive advantages in youth, but in elderly men can increase their likelihood of developing prostate cancer. Cellular senescence is a protective measure; it is a response to damage that could potentially turn a healthy cell into a malignant one. Understandably, this becomes considerably more complex when one is examining multiple genes and multiple pathways. Identifying all of the players involved is difficult enough. Conboy’s famous parabiosis experiment, where a young mouse’s system revived an old ones, shows that alterations in the microenviornment, in this case identified and unidentified factors in the blood of young mice, can be very beneficial to their elders. Conversely, there is a solid body of evidence that shows senescent cells can have a bad influence on their neighbors. How can something similar be achieved in humans without having to surgically attach a senior citizen to a college freshman?

By halting its own division, a senescent cell removes itself as an immediate tumorigenic threat. Yet the accumulation of nondividing cells is implicated in a host of pathologies, including, somewhat paradoxically, cancer, which, as any life actuary’s mortality table will show, is yet another bedfellow of the second half of life. The single greatest risk factor for developing cancer is age. The Hayflick Limit is well known to most people who have ever excitedly watched the drama of a freshly inoculated petri dish. After exhausting their telomeres, cells stop dividing. Hayflick et al. astutely noted that “the [cessation of cell growth] in culture may be related to senescence in vivo.” Although cellular senescnece is considered irreversible, a select few cells can resume normal growth after the inactivation of the p53 tumor suppressor. The removal of p16, a related gene, resulted in the elimination of the progeroid phenotype in mice. There are several important p’s at play here, but two are enough for now.

Our bodies are bombarded by insults to their resilient but woefully vincible microscopic machinery. Oxidative stress, DNA damage, telomeric dysfunction, carcinogens, assorted mutations from assorted causes, necessary or unnecessary immunological responses to internal or external factors, all take their toll. In response cells may repair themselves, they may activate an apoptotic pathway to kill themselves, or just stop proliferating. After suffering these slings and arrows, p53 is activated. Not surprisingly, mice carrying a hyperactive form of p53 display high levels of cellular senescence. To quote Campisi, abnormalities in p53 and p15 are found in “most, if not all, cancers.” Knocking p53 out altogether produced mice unusually free of tumors, but those mice find themselves prematurely past their prime. There is a clear trade-off here.

In a later experiment Garcia-Cao modified p53 to only express itself when activated. The mice exhibited normal longevity as well as an“unusual resistance to cancer.” Though it may seem so, these two cellular states are most certainly not opposing fates. As it is with oxidative stress and nutrient sensing, two other components of senescence or lack thereof, the goal is not to increase or decrease one side disproportionately, but to find the correct balance between many competing entities to maintain healthy homeostasis. As mentioned earlier, telomeres play an important role in geroconversion, the transformation of quiescent cells into senescent ones. Meta-analyses have shown a strong relationship between short telomeres and mortality risk, especially in younger people. Although cancer cells activate telomerase to overcome the Hayflick Limit, it is not entirely certain if the activation of telomerase is oncogenic.

majormouse

SASP (senescence-associated secretory phenotype) is associated with chronic inflammation, which itself is implicated in a growing list of common infirmities. Many SASP factors are known to stimulate phenotypes similar to those displayed by aggressive cancer cells. The simultaneous injection of senescent fibroblasts with premalignant epithelial cells into mice results in malignancy. On the other hand, senescent human melanocytes secrete a protein that induces replicative arrest in a fair percentage of melanoma cells. In all experiments tissue types must be taken into account, of course. Some of the hallmarks of inflammation are elevated levels of IL-6, IL-8, and TNF-α. Inflammatory oxidative damage is carcinogenic and an inflammatory microenvironment is a good breeding ground for malignancies.

Caloric restriction extends lifespan in part by inhibiting TOR/mTOR (target of rapamycin/mechanistic target of rapamycin, also called  the mammalian target of rapamycin). TOR is a sort of metabolic manager, it receives inputs regarding the availability of nutrients and stress levels and then acts accordingly. Metformin is also a TOR inhibitor, which is why it is being investigated as a cancer shield and a longevity aid. Rapamycin has extended average lifespans in all species tested thus far and reduces geroconversion. It also restores the self-renewal and differentiation capacities of haemopoietic stem cells. For these reasons the Major Mouse Testing Program is using rapamycin as its positive control. mTOR and p53 dance (or battle) with each other beautifully in what Hasty calls the “Clash of the Gods.” While p53 inhibits mTOR1 activity, mTOR1 increases p53 activity. Since neither metformin nor rapamycin are without their share of unwanted side effects, more senolytics must be explored in greater detail.

Starting with a simple premise, namely that senescent cells rely on anti-apoptotic and pro-survival defenses more than their actively replicating counterparts, Campisi and her colleagues created a series of experiments to find the “Achilles’ Heel” of senescent cells. After comparing the two different cell states, they designed senolytic siRNAs. 39 transcripts were selected for knockdown by siRNA transfection, and 17 affected the viability of their target more than healthy cells. Dasatinib, a cancer drug, and quercitin, a common flavonoid found in common foods, have senolytic properties. The former has a proven proclivity for fat-cell progenitors, and the latter is more effective against endothelial cells. Delivered together, they they remove senescent mouse embryonic fibroblasts. Administration into elderly mice resulted in favorable changes in SA-BetaGAL (a molecule closely associated with SASP) and reduced p16 RNA. Single doses of D+Q together resulted in significant improvements in progeroid mice.

If you are not titillated yet, please embark on your own journey through the gallery of encroaching options for those who would prefer not to become chronically ill, suffer immensely, and, of course, die miserably in a hospital bed soaked with several types of their own excretions―presumably, hopefully, those who claim to be unafraid of death have never seen this image or naively assume they will never be the star of such a dismal and lamentably “normal” final act. There is nothing vain about wanting to avoid all the complications that come with time. This research is quickly becoming an economic and humanitarian necessity. The trailblazers who move this research forward will not only find wealth at the end of their path, but the undying gratitude of all life on earth.

Adam Alonzi is a writer, biotechnologist, documentary maker, futurist, inventor, programmer, and author of the novels “A Plank in Reason” and “Praying for Death: Mocking the Apocalypse”. He is an analyst for the Millennium Project, the Head Media Director for BioViva Sciences, and Editor-in-Chief of Radical Science News. Listen to his podcasts here. Read his blog here.

References

Blagosklonny, M. V. (2013). Rapamycin extends life-and health span because it slows aging. Aging (Albany NY), 5(8), 592.

Campisi, Judith, and Fabrizio d’Adda di Fagagna. “Cellular senescence: when bad things happen to good cells.” Nature reviews Molecular cell biology 8.9 (2007): 729-740.

Campisi, Judith. “Aging, cellular senescence, and cancer.” Annual review of physiology 75 (2013): 685.

Hasty, Paul, et al. “mTORC1 and p53: clash of the gods?.” Cell Cycle 12.1 (2013): 20-25.

Kirkland, James L. “Translating advances from the basic biology of aging into clinical application.” Experimental gerontology 48.1 (2013): 1-5.

Lamming, Dudley W., et al. “Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity.” Science 335.6076 (2012): 1638-1643.

LaPak, Kyle M., and Christin E. Burd. “The molecular balancing act of p16INK4a in cancer and aging.” Molecular Cancer Research 12.2 (2014): 167-183.

Malavolta, Marco, et al. “Pleiotropic effects of tocotrienols and quercetin on cellular senescence: introducing the perspective of senolytic effects of phytochemicals.” Current drug targets (2015).

Rodier, Francis, Judith Campisi, and Dipa Bhaumik. “Two faces of p53: aging and tumor suppression.” Nucleic acids research 35.22 (2007): 7475-7484.

Rodier, Francis, and Judith Campisi. “Four faces of cellular senescence.” The Journal of cell biology 192.4 (2011): 547-556.

Salama, Rafik, et al. “Cellular senescence and its effector programs.” Genes & development 28.2 (2014): 99-114.

Tchkonia, Tamara, et al. “Cellular senescence and the senescent secretory phenotype: therapeutic opportunities.” The Journal of clinical investigation 123.123 (3) (2013): 966-972.

Zhu, Yi, et al. “The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs.” Aging cell (2015).

 

The Role of Aging in Society – Article by Demian Zivkovic

The Role of Aging in Society – Article by Demian Zivkovic

The New Renaissance HatDemian Zivkovic
******************************
Take the following situation. We discover an extremely contagious virus. It infects you and your loved ones, and quickly propagates through all of mankind. As a result, 150,000 people die every day. It kills more than twice the number killed in the Holocaust every three months, and in 30 years, it will have killed 1.5 billion, around one in six people. How high would this score on a list of global priorities? There’s no doubt the situation would be grave. Most people would demand immediate action.
***
But that’s just a thought experiment, right? Not really. Every day, 150,000 people do die from age-related disease. Not only the cost in lives is monumental; societal and economic costs are also on the rise. According to the Dutch Statistics Authority (the CBS), the amount of people older than 65 (retirement age) will have increased to 27% in 2040, from the current 19%. As more people are born, this also means more people die from age-related disease, taking all their knowledge, expertise, and productivity with them. In short: If we don’t do anything about the consequences of our aging population, we face severe consequences.
 *** 

So what is the best way to deal with the problem of our society aging?

There is no simple solution. More conventional healthcare barely improves quality of life, while just letting people die is not an ethical option. Rutger Bregman, a Dutch historian and philosopher, argues for thinking more radically about solutions to societal problems. According to his essay “Een pleidooi voor de utopie” (A plea for utopia) in the Dutch magazine “De groene Amsterdammer”, we have lost the ability to think in such a way; We only look at marginal improvements, instead of looking at changes that could radically improve and change our society. So if we do explore more radical solutions, what can we do?

Professor Aubrey de Grey, Ph.D. in biology, Chief Science Officer of the prestigious SENS Research Foundation, and partner at the Gerontological Society of America, argues that we could look at a radical intervention in human aging. According to de Grey, the best way of solving many of these problems is to cure aging at its source. De Grey is not the only one who holds that opinion. Alphabet, Inc.‘s biotechnology subsidiary (Calico) also views the problem from this position. This point of view obviously raises quite a few questions. Critics claim that de Grey’s vision is impossible or undesirable. Proponents point to the massive advantages of curing age-related disease.

One of the arguments put forward is that short-term thinking causes many economical and societal problems. Economist Joseph Stiglitz speaks about rent-seeking (“Rent-Seeking and the Making of an Unequal Society”, 2014), economically destructive behaviour in which an individual or business enriches itself while harming the entire economy in the process. Environmental concerns are also a very large issue. Since people (if they are lucky) don’t get to live much longer than a hundred years old, many people find it very uninteresting to think about what our behaviour is doing to the environment on the long term. But what will it mean for these problems if we have to let go of short-term thinking, because we live for a much longer time? One thing is for sure: If de Grey’s vision becomes reality, a lot will change in our society.

Economy, Environment, and Overpopulation
 *** 

Short-term thinking has a catastrophic effect on our economy and environment.

The previously mentioned economist Joseph Stiglitz claims in his article that our economy is suffering serious problems, since rent-seeking is causing society-wide destruction and inequality. For centuries, economists, philosophers, and ethicists have been considering how to stop such unethical behavior. Usually, they looked at different moral developments, better regulations, or restructuring society as solutions.

In his work “The Power of Context”, Malcolm Gladwell makes the claim that the environment and the context we live in have a large impact on our behaviour. Human life knows a few certainties; one of them is that you will die within a century. One may have children or grandchildren, but very few people are concerned about the fate of their heir several hundred generations down the road. In my interview with him (2014, Nakedbutsafe magazine), Professor de Grey argues that many people would be much more concerned with the long term if they knew they would still be around in several centuries, and there’s a lot to be said about that. Instead of waging a fruitless and hopeless war on selfishness, it may be more prudent to use it to improve the world.

De Grey’s solution essentially means inventing the fountain of youth through advanced biotechnology. He wants to do this through a method called “Strategies for Engineered Negligible Senescence” or SENS. SENS essentially involves periodically repairing accumulated damage from aging, so it never reaches a critical point where it turns into a specific illness. De Grey is not the only one who is looking for a solution for aging: Google Ventures heavily invests in such technology.

In 2013, Google founded a company called Calico, which entered a partnership with AbbVie. With a record investment of two billion dollars, most money ever put into a start-up, the ambitious firm wants to create a fundamental understanding of aging and use said understanding to eventually cure said aging. Bill Maris, president of Google Ventures, has already made the famous claim we will be able to have technology to live 500 years within our lifetimes. Another actor in the corporate sector is BioViva, whose CEO, Elizabeth Parrish, has become the first human on the planet to get treated with a combination of in vivo gene therapies to slow down aging.

The approaches of Calico, SENS, and BioViva look at the problem from different angles, but they have one thing in common: they are not looking at ways to extend the lives of sick, disabled seniors. Instead, they are looking at a method to not simply extend life, but to extend health. They are looking at methods to stop this biological aging from happening. Life extension is merely a side effect. After all, if a 200-year-old has the vitality of a 40-year-old, why would an aging population be a problem? Even though the population will age, the percentage of “elderly” people will decrease, and so will age-related suffering and related economic pressure.

However, not everyone is optimistic about these changes. Critics are concerned about what a radically extended life will mean for overpopulation. They argue that if nobody dies, we will have so many people that we will either have to kill people, or make reproduction illegal. While such a top-down approach may seem like “common sense”, there’s a lot to be said about why such drastic top-down measures will be unnecessary. Steven Johnson, a best-selling popular science author and media theorist, introduces the concept of emergence (Emergence: The Connected Lives of Ants, Brains, Cities, and Software, 2001). Emergence refers to patterns in complex systems which can’t be reduced to the properties or behaviours of an individual element of the system. Johnson uses the ant colony as an example: while no single ant coordinates the behaviour of the colony, the entire system is self-organizing and thus functions perfectly. An ant colony, but even more so human society, is a good example of an emergent system.

A simple example of this self-organization is the distribution of bread. There is no central authority that plants where bakeries should be located, how much grain should be produced, what logistic solutions should be used for bread transport to people’s homes, or what bread prices ought to be. In fact, such central planning has been tried several times in history. In communist dictatorships such as the Soviet Union and North Korea, centralized attempts at steer society have had catastrophic results. However, if emergence of self-organisation does its job, a society flourishes. We can see this same effect work on overpopulation and birth rates. According to the World Health Organisation, the fertility rates plummet as life expectancy skyrockets. Countries that have the highest life expectancies have the lowest birth rates. Japan, which has one of the highest life expectancies has a negative birth rate; its population is in decline, even though no central planning has intervened in any way.

This hypothesis is also supported by virtually all historic trends. Every widespread average life-expectancy spike was met with a plummet in birth rates. When our life expectancy went up because of the invention of antibiotics, our birth rates hit historic lows. We see the opposite in countries where life expectancy is very low. The country with the highest birth rate is Nigeria, while it’s one of the poorest countries in the world. The average life expectancy in Nigeria is below 55. According to the United Nations, countries with low life expectancy have by far the largest effect on overpopulation.

Regulation of population is therefore unnecessary; a complex system such as modern society self-regulates and corrects itself. This idea is in line with Gladwell’s theory of context-dependent behavior; the context largely defines our behavior. And as a self-organizing system, society demonstrably changes the context to steer our behavior in effective patterns. A dystopia where government has to regulate reproduction or death is very unlikely.

Philosophical Arguments

If Gladwell is right about context as catalyst of behaviour, what will the effects of a society devoid of biological aging be on our humanity? Not all arguments against radical life extension are pragmatic in nature. The conservative bioethicist Leon Kass is one of the opponents of radical life extension pondering this question. He argues that indefinite life extension is unnatural and thus undesirable. Kass also claims that we won’t appreciate life if we life “forever.”

“Time is a gift, but the perception of endless time or of time without bound in fact has the possibility of undermining the degree to which we take time seriously and make it count.”

~ Leon Kass (Aging Research, 2004).

Kass makes a comparison with the ancient Greek gods to argument why life’s shortness gives it purpose.

Homer in The Iliad and The Odyssey presents human beings whom he names as mortals. That is their definition in contrast to the immortals. And the immortals for their agelessness and their beauty live sort of shallow and frivolous lives. Indeed, they depend for their entertainment on watching the mortals who, precisely because they know that their time is limited, and that they go around only once, are inclined to make time matter and to aspire to something great for themselves.

~ Leon Kass (Aging Research, 2004)

While these arguments may seem somewhat of a philosophical take on many common criticisms, they are easily debunked. Elizabeth Parrish, CEO of BioViva and a pioneering entrepreneur in the field of gene therapy, argues against the idea that we should accept something because it’s considered “normal.” (“Liz Parrish speaks at People Unlimited on transcending the aging paradigm with gene therapy”, 2015). She argues that “normal” is a situational opinion which constantly changed throughout the entirety of history. In 1665, dying of infectious disease was normal. During this time only one percent of all humans died from aging: Infectious diseases were responsible for more than three quarters of all deaths before we developed the first immunization therapies – the development of which is similar to the process to defeat aging with gene therapy today. Just like today, there was criticism of the development of vaccines and antibiotics, even though lifespans and health were greatly improved by the use of these advancements – and the arguments have stayed very much the same.

Parrish is not the only one who provides a strong argument against the vision of Kass. Reason, creator of the Fight Aging! blog, is another intellectual who is very skeptical about Kass’s position. In his rebuttal of Kass (“Leon Kass, Mystic” by Reason, 2004), he compares Kass with an alchemist, a modern mystic:

“The alchemists of old stood atop what little knowledge of chemistry they had and built a speculative religion of hermetic magic, transient wishes, celestial signs and hidden gold. Leon Kass stands atop what little biotechnology we have today (and seems to have a good grasp thereof), building his own structures of fanciful thought, equally disconnected from the real world. 

All of Kass’ arguments against longer, healthier lives are essentially mystical and devoid of real substance.”

In “Leon Kass, Mystic” (2004), Reason wonders if Kass’s philosophical musings are enough of a reason to condemn billions of people to a slow and painful death. Just like the alchemists, Reason argues, Kass’s vision is based upon ancient texts and his own subjective knee-jerk reactions, instead of researching the world around him. Reason postulates that this is the fundamental difference between a mystic and a scientist: The mystic is immune to impractical facts, consequences, and reality.

De Grey also argues against the bioconservative position. He rejects the idea that longer lives will somehow lower our appreciation of life. We will be able to start a new major when we are fifty years old, or a new career when we’re a hundred and fifty. The very fact that we have so little time causes us to experience “lock-in” in our careers and choices. This causes boredom and stress. The amount of time we lose switching to doing something we may enjoy a lot more is too radical, because we have so little time to begin with. Radical life extension seems more likely to actually cure the problems its critics claim it will cause (such as boredom, stress, or disenchantment with life).

Conclusion

Treatments for age-related diseases are on their way, and curing aging is big business. The first people are already getting early treatments, and the prognoses are positive. Society will have to adapt to the changes that come with these treatments. It is very important to explore options for adequately engaging public opinion in favor of curing age-related disease, to mitigate massive economic and human losses that these diseases currently cause, and to create the legislation and framework needed to implement these technologies in a fair, responsible, and sane way.

Bibliography

Bregman, Rutger (2013). Dromen is niet eng; Essay Pleidooi voor de utopie. De Groene Amsterdammer, jaar 137, week 20. https://www.groene.nl/artikel/pleidooi-voor-de-utopie.

Gladwell, Malcolm (2000). The Power of Context. In R.E. Miller & Spellmeyer (Eds.), The New Humanities Reader (Fifth Edition, pp. 148-167). Print.
 *** 
Stiglitz, J. E. (2012). Rent Seeking and the Making of an Unequal Society. In R.E. Miller & Spellmeyer (Eds.), The New Humanities Reader (Fifth Edition, pp. 148-167). Print.
 *** 

Johnson, Steven. ‘Emergence: The connected Lives of Ants, Brains, Cities, and Software’, 2001. In ‘The New Humanities Reader’, Richard E. Miller, Kurt Spellmeyer, Wadsworth, 2011, pp. 151 – 165

De Grey, Aubrey D. N. J. (2005). Resistance to debate on how to postpone ageing is delaying progress and costing lives. EMBO Reports, 6(Suppl 1), S49–S53. http://doi.org/10.1038/sj.embor.7400399

Kass, Leon (2004). Aging Research.  http://agingresearch.org/sage/Default.aspx?tabid=60

Reason (2004). Leon Kass, Mystic. FightAging.org. https://www.fightaging.org/archives/2004/04/leon-kass-mysti.php
 *** 
Parrish, Elizabeth (2015). Liz Parrish speaks at People Unlimited on transcending the aging paradigm with gene therapy. https://www.youtube.com/watch?v=87OUb8TBwX0
 *** 

Demian Zivkovic is the president of the Institute of Exponential Sciences  (Facebook  / Meetup) – an international transhumanist think tank / education institute comprised of a group of transhumanism-oriented scientists, professionals, students, journalists, and entrepreneurs interested in the interdisciplinary approach to advancing exponential technologies and promoting techno-positive thought. He is also an entrepreneur and student of artificial intelligence and innovation sciences and management at the university of Utrecht.

Demian and the IES have been involved in several endeavors, such as organizing lectures on exponential sciences, interviewing experts such as Aubrey de Grey, joining several of Mr. Stolyarov’s futurism panels, and spreading Death is Wrong – Mr. Stolyarov’s illustrated children’s book on indefinite life extension – in The Netherlands.

Demian Zivkovic is a strong proponent of healthy life extension and cognitive augmentation. His interests include hyperreality, morphological freedom advocacy, postgenderism, and hypermodernism. He is currently working on his ambition of raising enough capital to make a real difference in life extension and transhumanist thought.

“A Morte é um Erro” – Portuguese Translation of “Death is Wrong” – Translated by Eric Pedro Alvaro – Post by G. Stolyarov II

“A Morte é um Erro” – Portuguese Translation of “Death is Wrong” – Translated by Eric Pedro Alvaro – Post by G. Stolyarov II

The New Renaissance Hat
G. Stolyarov II
******************************

A free PDF version of A Morte é um Erro – the Portuguese translation of Death is Wrong – is now available for download from The Rational Argumentator. You can obtain your copy here and may spread it to Portuguese-speaking audiences as widely as you wish.

A Morte é um Erro was generously translated into Portuguese by Eric Pedro Alvaro.

Death_is_Wrong_Portuguese_CoverPaperback copies of A Morte é um Erro can be purchased in the following venues:

Createspace

Amazon

Kindle copies of A Morte é um Erro can be purchased on Amazon for $0.99.

***

Se você já se perguntou, “Por que as pessoas morrem?” então este livro é para você. A resposta é que não, a morte não é necessária, inevitável ou boa. Na verdade, a morte é um erro. A morte é uma inimiga de todos nós, que deve ser combatida com ciência, medicina e tecnologia. Este livro lhe apresenta os maiores, mais desafiantes e mais revolucionários movimentos para prolongar radicalmente o tempo de vida humano, para que você então simplesmente não precise morrer.

Você aprenderá sobre algumas plantas e animais com um tempo de vida incrivelmente longo, sobre recentes descobertas científicas em relação a ampliação do tempo de vida em humanos, e sobre simples e poderosos argumentos que podem refutar as comuns desculpas para a morte. Se você alguma vez já pensou que a morte é injusta e que ela deve ser derrotada, você não está sozinho. Leia este livro, e se torne parte desta importante busca na história da humanidade.

Este livro foi escrito pelo filósofo e futurólogo Gennady Stolyarov II e ilustrado pela artista Wendy Stolyarov. Com o intuito de lhe mostrar que, não importa quem é você e o que você pode fazer, sempre há uma forma de ajudar humanidade em sua batalha contra morte.

Google Life Sciences to Fund Heart Disease Program – Article by Reason

Google Life Sciences to Fund Heart Disease Program – Article by Reason

The New Renaissance Hat
Reason
November 22, 2015
******************************

An interesting next step from Google Life Sciences: they are putting forward $50 million in search of a laboratory to propose a program that pushes forward the state of the art in research and treatment of heart disease. Spent over ten years, that would produce an organization about the present size of the SENS Research Foundation, or a tenth of the Buck Institute, for purposes of comparison – and smaller than many of the research groups presently dedicated to the study of heart disease. So this is a sizable and welcome investment in medical research, but the significance is overhyped by the reporting organization here; no-one is going to cure heart disease with a $50 million project, since heart disease is caused by aging, and in the most general sense. This is an effort to change the funding landscape, stir things up, and make some progress.

If you walk through the list of forms of cell and tissue damage that causes degenerative aging, near every one of them contributes to structural failure of the cardiovascular system. The loss of stem cell activity and consequent decline in repair of tissues is only one of these: oxidized lipids that contribute to atherosclerosis in blood vessel walls; extracellular cross-links stiffen blood vessel walls and cause hypertension and consequent structural weakening in the heart; senescent cells wreck havoc on all the tissues they accumulate in; transthyretin amyloids that accumulate with age are implicated in heart disease via their ability to clog the cardiovascular system; and the loss of lysosomal function in long-lived cells, including those of the heart, progressively damages their function. Curing heart disease, removing it from the picture, requires treatments that effectively address near all of the causes of aging.

Quote from “Google Aims a $50 Million Moonshot at Curing Heart Disease” by Davey Alba, WIRED, November 16, 2015:

Cardiovascular disease people on Earth than anything else – over 17 million a year, and the number keeps going up. Of those deaths, more than 40 percent is due to coronary heart disease. Medicine has drugs that can treat it and practices that can help prevent it, but nobody really knows what causes it or how to cure it. Now, Google and the American Heart Association aim to change that by dropping a $50 million funding bomb on the problem. And as you might expect from a Silicon Valley giant that believes in moving fast and breaking things – an approach that hasn’t always transferred well to basic scientific research – the company isn’t spreading the money around. Google Life Sciences and the AHA said the money would go to one team over five years. “Traditional research funding models are often incremental and piecemeal, making it difficult to study a long-term, multifaceted subject. AHA and Google Life Sciences have committed to a bold new approach.”

The AHA, already the largest funder of cardiovascular research in the US outside of the federal government, says the program will be its most heavily funded initiative in nearly a century. Applications begin in January and if all goes according to plan, they’ll be due by February 14th. (Valentine’s Day. Get it?) If you want the $50 million, your idea has to fit on a single page. And Google won’t take a financial or intellectual property stake in the results. The organizations hope that the program will accelerate the field of heart research much like Google’s self-driving car eventually compelled the entire automobile industry to follow its lead.

Link: http://www.wired.com/2015/11/google-aims-a-50-million-moonshot-at-curing-heart-disease/

Reason is the founder of The Longevity Meme (now Fight Aging!). He saw the need for The Longevity Meme in late 2000, after spending a number of years searching for the most useful contribution he could make to the future of healthy life extension. When not advancing the Longevity Meme or Fight Aging!, Reason works as a technologist in a variety of industries. 
***

This work is reproduced here in accord with a Creative Commons Attribution license. It was originally published on FightAging.org.

BioViva Treats First Patient with Gene Therapy to Reverse Aging – Press Release by Elizabeth Parrish

BioViva Treats First Patient with Gene Therapy to Reverse Aging – Press Release by Elizabeth Parrish

The New Renaissance HatElizabeth Parrish
October 3, 2015
******************************

BioViva USA, Inc. has become the first company to treat a person with gene therapy to reverse biological aging, using a combination of two therapies developed and applied outside the United States of America. Testing and research on these therapies is continuing in BioViva’s affiliated labs worldwide.

BioViva CEO Elizabeth Parrish announced that the subject is doing well and has resumed regular activities. Preliminary results will be evaluated at 5 and 8 months with full outcome expected at 12 months. The patient will then be monitored every year for 8 years.

Gene therapy allows doctors to treat disease at the cellular level by inserting a gene into a patient’s cells instead of using the regular modalities of oral drugs or surgery. BioViva is testing several approaches to age reversal, including using gene therapy to introduce genes into the body.

Although not generally considered a disease, cellular aging is the leading cause of death in the developed world. Side effects like muscle wasting (sarcopenia), grey hair and memory loss are the well-known hallmarks.

And the aging cell is also responsible for the diseases of aging, including Alzheimer’s disease, heart disease and cancer. BioViva is leading the charge to treat the aging cell and reverse aging. “The aging cell is a key factor that has been overlooked for too long. Companies have put millions of dollars into treating the diseases of aging, such as dementia, frailty, kidney failure and Parkinson’s disease, and we still do not have a cure,” says Parrish.

Until now, no company had tried multiple gene therapies in one person. When asked why BioViva has done so, Parrish says, “Aging involves multiple pathways. We wanted to target more than one for a better outcome.”

Contact
Elizabeth Parrish
lparrish(at)BioVivaSciences(dot)com
http://www.biovivasciences.com

Elizabeth Parrish, CEO of BioViva, is a humanitarian, entrepreneur, and innovator, and is a leading voice for genetic cures. As a strong proponent of progress and education for the advancement of regenerative medicine modalities, she serves as a motivational speaker to the public at large for the life sciences. She is actively involved in international educational media outreach and sits on the board of the International Longevity Alliance (ILA). She is an affiliated member of the Complex Biological Systems Alliance (CBSA), which is a unique platform for Mensa-based, highly gifted persons who advance scientific discourse and discovery.

The mission of the CBSA is to further scientific understanding of biological complexity and the nature and origins of human disease. Elizabeth is the founder of BioTrove Investments LLC and the BioTrove Podcasts, which is committed to offering a meaningful way for people to learn about and fund research in regenerative medicine.  She is also the Secretary of The American Longevity Alliance (ALA), a 501(c)(3) nonprofit trade association that brings together individuals, companies, and organizations who work in advancing the emerging field of cellular and regenerative medicine.

Editor’s Note: Elizabeth Parrish also made the announcement of this promising human trial at the October 1, 2015, Movement for Indefinite Life Extension (MILE) panel discussion “How Can Life Extension Become as Popular as the War on Cancer?” Watch the discussion here.

~ Gennady Stolyarov II, Editor-in-Chief, The Rational Argumentator, October 3, 2015

How Can Life Extension Become as Popular as the War on Cancer? – MILE Panel

How Can Life Extension Become as Popular as the War on Cancer? – MILE Panel

MILE-Demonstration-2-Ad

What can be done to raise public support for the pursuit of indefinite life extension through medicine and biotechnology to the same level as currently exists for disease-specific research efforts aimed at cancers, heart disease, ALS, and similar large-scale nemeses?

In this panel discussion, which occurred on October 1, 2015 – International Longevity Day – Mr. Stolyarov asks notable life-extension supporters to provide input on this vital question and related areas relevant to accelerating the pursuit of indefinite longevity. Watch the full discussion here.

This panel is coordinated in conjunction with MILE, the Movement for Indefinite Life Extension.

View the presentation slides prepared by Sven Bulterjis, “Aging Research Needs Marketing: What Can We Learn from Cancer Research?”:

***

Also see a statement prepared by Peter Rothman for this event. This statement was read out by Mr. Stolyarov during the panel, and panelists’ responses were solicited.

Read the announcement by Keith Comito – “The #LifespanChallenge Starting on October 1 – International Longevity Day”.

See Mr. Comito’s introductory video for the Lifespan Challenge.

*

Panelists

Adam Alonzi is the author of the fiction books “Praying for Death: A Zombie Apocalypse“and “A Plank in Reason”. He is also a futurist, inventor, DIY enthusiast, biotechnologist, programmer, molecular gastronomist, consummate dilletante and columnist at The Indian Economist. Listen to his podcasts at http://adamalonzi.libsyn.com/. Read his blog at https://adamalonzi.wordpress.com/.

Sven Bulterjis is a founder and member of the Board of Directors of Heales – the Healthy Life Extension Society, based in Brussels, Belgium. He has worked as a post-graduate researcher at the SENS Research Foundation and at Yale University. Moreover, he is an Advisor for the Lifeboat Foundation’s A-Prize, whose purpose is to put the development of artificial life forms into the open.

Keith Comito is a computer programmer and mathematician whose work brings together a variety of disciplines to provoke thought and promote social change. He has created video games, bioinformatics programs, musical applications, and biotechnology projects featured in Forbes and NPR.

In addition to developing high-profile mobile applications such as HBO Now and MLB AtBat, he explores the intersection of technology and biology at the Brooklyn community lab Genspace where he helped to create games which allow players to direct the motion of microscopic organisms. Read his Forbes article “Biological Games“.

Seeing age-related disease as one of the most profound problems facing humanity, he now works to accelerate and democratize longevity research efforts through initiatives such as Lifespan.io.
He earned a B.S. in Mathematics, B.S. in Computer science, and M.S. in Applied Mathematics at Hofstra University, where his work included analysis of the LMNA protein.

Roen Horn is a philosopher and lecturer on the importance of trying to live forever. He founded the Eternal Life Fan Club in 2012 to encourage fans of eternal life to start being more strategic with regard to this goal. To this end, one major focus of the club has been on life-extension techniques, everything from lengthening telomeres to avoiding risky behaviors. Currently, Roen’s work may be seen in the many memes, quotes, essays, and video blogs that he has created for those who are exploring their own thoughts on this, or who want to share and promote the same things. Like many other fans of eternal life, Roen is in love with life, and is very inspired by the world around him and wants to impart in others the same desire to discover all this world has to offer.

B.J. Murphy is the Editor and Social Media Manager of Serious Wonder. He is a futurist, philosopher, activist, author and poet. B.J. is an Advisory Board Member for the NGO nonprofit Lifeboat Foundation and a writer for the Institute for Ethics and Emerging Technologies (IEET).

Elizabeth Parrish, CEO of BioViva, is a humanitarian, entrepreneur, and innovator, and is a leading voice for genetic cures. As a strong proponent of progress and education for the advancement of regenerative medicine modalities, she serves as a motivational speaker to the public at large for the life sciences. She is actively involved in international educational media outreach and sits on the board of the International Longevity Alliance (ILA). She is an affiliated member of the Complex Biological Systems Alliance (CBSA), which is a unique platform for Mensa-based, highly gifted persons who advance scientific discourse and discovery.

The mission of the CBSA is to further scientific understanding of biological complexity and the nature and origins of human disease. Elizabeth is the founder of BioTrove Investments LLC and the BioTrove Podcasts, which is committed to offering a meaningful way for people to learn about and fund research in regenerative medicine.  She is also the Secretary of The American Longevity Alliance (ALA), a 501(c)(3) nonprofit trade association that brings together individuals, companies, and organizations who work in advancing the emerging field of cellular and regenerative medicine.

Statement by Peter Rothman on the Question “How Can Life Extension Become as Popular as the War on Cancer?”

Statement by Peter Rothman on the Question “How Can Life Extension Become as Popular as the War on Cancer?”

The New Renaissance HatPeter Rothman
October 1, 2015
******************************
Editor’s Note: This statement was prepared by Mr. Rothman in connection with the October 1, 2015, Movement for Indefinite Life Extension (MILE) Panel: “How Can Life Extension Become as Popular as the War on Cancer?” The panel took place from 11 a.m. to 1 p.m. US Pacific Time on October 1, 2015. This statement was read out by me during the panel, and panelists’ responses were solicited. Watch the recording of the discussion, including panelists’ responses to Mr. Rothman’s statement, here.
~ Gennady Stolyarov II, Editor-in-Chief, The Rational Argumentator, October 1, 2015
***
Question: “How Can Life Extension Become as Popular as the War on Cancer?”

I have a few thoughts on this question. Perhaps ironically, they’re in the form of more questions.

What exactly is the War on Cancer? How did it start?

How “popular” is it?

Does popularity in this sense correspond to funding, research results, or any meaningful metric?

Is this approach something we want to emulate?

***

Wikipedia reports, “The War on Cancer refers to the effort to find a cure for cancer by increased research to improve the understanding of cancer biology and the development of more effective cancer treatments, such as targeted drug therapies. The aim of such efforts is to eradicate cancer as a major cause of death. The signing of the National Cancer Act of 1971 by then U.S. President Richard Nixon is generally viewed as the beginning of the war on cancer, though it was not described as a “war” in the legislation itself.“

The War on Cancer is referring here to the passage of a law and is not really a war in the conventional sense.

The popularity of the idea is a bit of misleading thing. I’m not sure what this means here. How many people supported the law back when it was passed? How many people think it is a good idea now? How many people search for this phrase on Google? Popularity in the sense of the general public liking an idea had little or nothing to do with the passage of a law like this.

So in summary, the War on Cancer required the passage of a law allocating funds. The popularity of the idea had nothing to do with it.

The idea of war on a disease or an abstract concept such as “terror” is problematic. War suggests enemies to attack and weapons to deploy. But these metaphors are not always correct in reference to curing an illness like cancer or solving the complex problem of aging.

After all, the enemy in cancer is our own DNA. How can we attack it?

With aging the issue is even more dramatic. A war on aging suggests eliminating older persons perhaps. The war metaphor is at least overused and deserves to be questioned.

Has the war on cancer been won? Wars are won and lost, but our scientific investigation of methods to cure disease goes on. Just because a disease is able to be cured in some cases does not mean we have “won”.

Curing aging is in fact not entirely separate from curing cancer. Cancer is largely a disease of older persons, especially certain cancers. So any “war on aging” would at least overlap with the war on cancer. Creating a new war is always problematic, however.

Declaring war does not produce funding. Successfully defeating aging require funding of research and development of medical techniques, medicines, etc. It isn’t a PR campaign like “Say No to Drugs” during the Reagan era and the same methods of communication do not apply..

But transhumanists are notoriously bad at marketing, for example consider the failed Immortality Bus campaign which draws crowds of less than half a dozen people. Sure it is weird enough to get written up in Vice, but does it convince anyone that controls funding to support our efforts? Name one person or organization that has funded some scientific research as a result of this campaign. There isn’t one.

To move forward we have to focus on the efforts that matter, and that means getting research funding. A realistic approach to increasing research funding is forming a Political Action Committee to promote the idea in congress and in D.C. more generally. This is where the decision will be made as it was with Nixon’s 1971 Cancer Act. All other efforts are at best distractions, and at worst make our cause seem weird or out of the mainstream.

Weird, fringe causes do not attract funding.

In summary, I want to suggest to the panel and audience that they go All In for longevity research. This means doing whatever you can do yourself to achieve longevity. Eat right, get enough sleep. Avoid junk food. Exercise. Transhumanists that do not do these things are not in a good position to talk to the public about longevity at all in my view.

Beyond this, we need to directly support research ourselves. Crowdfunding is one avenue, but realistically crowdfunding is a drop in the bucket and will remain so when compared to the U.S. annual research budget of $65 billion dollars. Volunteer yourself.
***
References
https://en.wikipedia.org/wiki/War_on_Cancer
http://www.issues.org/19.4/updated/bailar.pdf
http://graylab.dfci.harvard.edu/assets/files/publication%20pdf/Review%20paper/Review-Haber%20DA-Cell-2011.pdf
http://timesofsandiego.com/opinion/2015/09/30/the-midlife-crisis-in-americas-war-on-cancer/
http://www.cell.com/cell/pdf/S0092-8674(15)00365-7.pdf
***

Peter Rothman, M.S. is Editor of H+ Magazine where he is looking for great articles about the future of technology, humanity, the mind, society, and human culture.

Peter is an engineering and management professional with deep experience in the design, development, and launch, of commercial software products, internet services, and other mission critical systems. He is currently doing research into analysis and visualization of text for a consumer facing application.

He was previously chief scientist of a biometrics-based fraud prevention company. He led the development of Live365.com, one of the largest providers of streaming audio on the Internet. He operated a product development and engineering team for the global multi-million dollar public software company MetaTools/MetaCreations. He founded and operated a startup software company, raised capital, and negotiated eventual sale of company. He has designed and implemented cutting-edge software, algorithms, and technologies.

Peter’s specialties include biometrics, mathematics, streaming media, virtual reality, simulation, text analysis, data visualization, and artificial intelligence.

Peter was an early developer of VR technologies, including developing applications of VR to financial visualization and a concept for unencumbered infantry training using VR for the US Army.

Aging Research Needs Marketing: What Can We Learn from Cancer Research? – Presentation by Sven Bulterjis

Aging Research Needs Marketing: What Can We Learn from Cancer Research? – Presentation by Sven Bulterjis

The New Renaissance HatSven Bulterjis
October 1, 2015
******************************
These presentation slides were prepared by Sven Bulterjis and are a component of the materials for the October 1, 2015, Movement for Indefinite Life Extension (MILE) Panel: “How Can Life Extension Become as Popular as the War on Cancer?” The panel took place from 11 a.m. to 1 p.m. US Pacific Time on October 1, 2015. Watch the recording of the discussion, including Mr. Bulterjis’s presentation, here.
***
***
Sven Bulterjis is a founder and member of the Board of Directors of Heales – the Healthy Life Extension Society, based in Brussels, Belgium. He has worked as a post-graduate researcher at the SENS Research Foundation and at Yale University. Moreover, he is an Advisor for the Lifeboat Foundation’s A-Prize, whose purpose is to put the development of artificial life forms into the open.